共 85 条
[61]
(2000)
[62]
Merler M., Ratha N., Feris R.S., Smith J.R., Diversity in faces, (2019)
[63]
Yeh I.-C., Lien C.-H., The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients, Expert Syst. Appl., 36, 2, pp. 2473-2480, (2009)
[64]
Moro S., Cortez P., Rita P., A data-driven approach to predict the success of bank telemarketing, Decis. Support Syst., 62, pp. 22-31, (2014)
[65]
Angwin J., Larson J., Mattu S., Kirchner L., Machine bias, Ethics of Data and Analytics, pp. 254-264, (2016)
[66]
du Pin Calmon F., Wei D., Vinzamuri B., Ramamurthy K.N., Varshney K.R., Data pre-processing for discrimination prevention: Information-theoretic optimization and analysis, IEEE J. Sel. Top. Sign. Proces., 12, 5, pp. 1106-1119, (2018)
[67]
Krasanakis E., Spyromitros-Xioufis E., Papadopoulos S., Kompatsiaris Y., Adaptive sensitive reweighting to mitigate bias in fairness-aware classification, pp. 853-862, (2018)
[68]
Khademi A., Lee S., Foley D., Honavar V., Fairness in algorithmic decision making: An excursion through the lens of causality, pp. 2907-2914, (2019)
[69]
Feng R., Yang Y., Lyu Y., Tan C., Sun Y., Wang C., Learning fair representations via an adversarial framework, (2019)
[70]
Wu X., Xu D., Yuan S., Zhang L., Fair data generation and machine learning through generative adversarial networks, Generative Adversarial Learning: Architectures and Applications, pp. 31-55, (2022)