共 85 条
[1]
Dieterich W., Mendoza C., Brennan T., COMPAS Risk Scales: Demonstrating Accuracy Equity and Predictive Parity, Vol. 7, (2016)
[2]
Wu Y., Cao J., Xu G., FASTER: A dynamic fairness-assurance strategy for session-based recommender systems, ACM Trans. Inf. Syst., (2023)
[3]
Estiri H., Strasser Z.H., Rashidian S., Klann J.G., Wagholikar K.B., McCoy T.H., Murphy S.N., An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes, J. Am. Med. Inf. Assoc., 29, 8, pp. 1334-1341, (2022)
[4]
Chen Z., Zhang J.M., Sarro F., Harman M., A comprehensive empirical study of bias mitigation methods for machine learning classifiers, ACM Trans. Softw. Eng. Methodol., (2023)
[5]
Aggarwal A., Lohia P., Nagar S., Dey K., Saha D., Black box fairness testing of machine learning models, pp. 625-635, (2019)
[6]
Biswas S., Rajan H., Fair preprocessing: towards understanding compositional fairness of data transformers in machine learning pipeline, pp. 981-993, (2021)
[7]
Chakraborty J., Majumder S., Menzies T., Bias in machine learning software: Why? how? what to do?, pp. 429-440, (2021)
[8]
Hort M., Zhang J.M., Sarro F., Harman M., Fairea: A model behaviour mutation approach to benchmarking bias mitigation methods, pp. 994-1006, (2021)
[9]
Udeshi S., Arora P., Chattopadhyay S., Automated directed fairness testing, pp. 98-108, (2018)
[10]
Zhang P., Wang J., Sun J., Dong G., Wang X., Wang X., Dong J.S., Dai T., White-box fairness testing through adversarial sampling, pp. 949-960, (2020)