Toward the end-to-end optimization of particle physics instruments with differentiable programming

被引:15
|
作者
Dorigo T. [1 ,2 ,24 ]
Giammanco A. [1 ,3 ,24 ]
Vischia P. [1 ,3 ,24 ]
Aehle M. [4 ]
Bawaj M. [5 ]
Boldyrev A. [1 ,6 ]
de Castro Manzano P. [1 ,2 ]
Derkach D. [1 ,6 ]
Donini J. [1 ,7 ,24 ]
Edelen A. [8 ]
Fanzago F. [1 ,2 ]
Gauger N.R. [4 ]
Glaser C. [1 ,9 ]
Baydin A.G. [1 ,10 ]
Heinrich L. [1 ,11 ]
Keidel R. [12 ]
Kieseler J. [1 ,13 ]
Krause C. [1 ,14 ]
Lagrange M. [1 ,3 ]
Lamparth M. [1 ,11 ]
Layer L. [1 ,2 ,15 ]
Maier G. [16 ]
Nardi F. [1 ,2 ,7 ,17 ]
Pettersen H.E.S. [18 ]
Ramos A. [19 ]
Ratnikov F. [1 ,6 ]
Röhrich D. [20 ]
de Austri R.R. [19 ]
del Árbol P.M.R. [1 ,21 ]
Savchenko O. [2 ,3 ]
Simpson N. [22 ]
Strong G.C. [1 ,2 ]
Taliercio A. [3 ]
Tosi M. [1 ,2 ,17 ]
Ustyuzhanin A. [1 ,25 ]
Zaraket H. [1 ,23 ]
机构
[1] Istituto Nazionale di Fisica Nucleare, Sezione di Padova
[2] Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain
[3] Chair for Scientific Computing, Technische Universität Kaiserslautern
[4] Università di Perugia and INFN, Sezione di Perugia
[5] Université Clermont Auvergne, Laboratoire de Physique de Clermont
[6] Department of Physics and Astronomy, Uppsala University
[7] Department of Computer Science, University of Oxford
[8] Physik-Department, Technische Universität München
[9] Center for Technology and Transfer, University of Applied Sciences Worms
[10] NHETC, Department of Physics and Astronomy, Rutgers University
[11] Department of Oncology and Medical Physics, Haukeland University Hospital
[12] Instituto de Física Corpuscular, UV-CSIC
[13] Department of Physics and Technology, University of Bergen
[14] Instituto de Física de Cantabria, UC-CSIC
[15] Multi-Disciplinary Physics Laboratory, Optics and Fiber Optics Group, Faculty of Sciences, Lebanese University
[16] Constructor University Bremen gGmbH, Campus Ring 1, Bremen
来源
Reviews in Physics | 2023年 / 10卷
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
Astrophysics; Differentiable programming; Machine learning; Nuclear physics; Optimization; Particle detectors; Particle physics;
D O I
10.1016/j.revip.2023.100085
中图分类号
学科分类号
摘要
The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, due to the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, “experience-driven” layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized through a systematic search of the configuration space. The stochastic nature of the involved quantum processes make the modeling of these systems an intractable problem from a classical statistics point of view, yet the construction of a fully differentiable pipeline and the use of deep learning techniques may allow the simultaneous optimization of all design parameters. In this white paper, we lay down our plans for the design of a modular and versatile modeling tool for the end-to-end optimization of complex instruments for particle physics experiments as well as industrial and medical applications that share the detection of radiation as their basic ingredient. We consider a selected set of use cases to highlight the specific needs of different applications. © 2023 The Author(s)
引用
收藏
相关论文
共 50 条
  • [21] DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs
    Sadeghian, Ali
    Armandpour, Mohammadreza
    Ding, Patrick
    Wang, Daisy Zhe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [22] End-to-end differentiable construction of molecular mechanics force fields
    Wang, Yuanqing
    Fass, Josh
    Kaminow, Benjamin
    Herr, John E.
    Rufa, Dominic
    Zhang, Ivy
    Pulido, Ivan
    Henry, Mike
    Macdonald, Hannah E. Bruce
    Takaba, Kenichiro
    Chodera, John D.
    CHEMICAL SCIENCE, 2022, 13 (41) : 12016 - 12033
  • [23] End-to-end automatic lens design with a differentiable diffraction model
    Zhang, Wenguan
    Ren, Zheng
    Hou, Jingwen
    Hen, Shiqi
    Feng, Huajun
    Li, Q., I
    Xu, Zhihai
    Chen, Yueting
    OPTICS EXPRESS, 2024, 32 (25): : 44328 - 44345
  • [24] End-to-End Complex Lens Design with Differentiable Ray Tracing
    Sun, Qilin
    Wang, Congli
    Fu, Qiang
    Dun, Xiong
    Heidrich, Wolfgang
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [25] ∂PV: An End-to-End Differentiable Solar-Cell Simulator
    Mann, Sean
    Fadel, Eric
    Schoenholz, Samuel S.
    Cubuk, Ekin D.
    Johnson, Steven G.
    Romano, Giuseppe
    Mann, Sean (seanmann@mit.edu); Romano, Giuseppe (romanog@mit.edu), 2021, arXiv
  • [26] End-to-End Differentiable Model for Optimization of Rocket-Powered Vehicles Including Plume Radiant Emission
    Mathesius, Kelly J.
    Sharpe, Peter D.
    Hansman, R. John
    JOURNAL OF SPACECRAFT AND ROCKETS, 2024,
  • [27] End-to-End Optimization of Constellation Shaping for Wiener Phase Noise Channels With a Differentiable Blind Phase Search
    Rode, Andrej
    Geiger, Benedikt
    Chimmalgi, Shrinivas
    Schmalen, Laurent
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (12) : 3849 - 3859
  • [28] End-to-End Optimization of Scene Layout
    Luo, Andrew
    Zhang, Zhoutong
    Wu, Jiajun
    Tenenbaum, Joshua B.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3753 - 3762
  • [29] End-to-end Conditional Robust Optimization
    Chenreddy, Abhilash Reddy
    Delage, Erick
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2024, 244 : 736 - 748
  • [30] End-to-end optimization of prosthetic vision
    van Steveninck, Jaap de Ruyter
    Guclu, Umut
    van wezel, Richard
    van Gerven, Marcel
    JOURNAL OF VISION, 2022, 22 (02):