Cost-sensitive stacking ensemble learning for company financial distress prediction

被引:2
|
作者
Wang, Shanshan [1 ]
Chi, Guotai [1 ]
机构
[1] Dalian Univ Technol, Sch Econ & Management, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Financial distress prediction; Cost-sensitive; Stacking; Ensemble learning; FEATURE-SELECTION; GENETIC ALGORITHM; TREE; FRAMEWORK; RATIOS; SYSTEM; RISK;
D O I
10.1016/j.eswa.2024.124525
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Financial distress prediction (FDP) is a topic that has received wide attention in the finance sector and data mining field. Applications of combining cost-sensitive learning with classification models to address the FDP problem have been intensely attracted. However, few combined cost-sensitive learning and Stacking to predict financial distress. In this article, a cost-sensitive learning method for FDP, namely cost-sensitive stacking (CSStacking), is put forward. In this work, a two-phase feature selection method is used to select the optimal feature subset. A CSStacking ensemble model is developed with selected features to make a final prediction. The paired T test and non-parametric Wilcoxon test are employed to check the significant differences between CSStacking and benchmark models. An experiment over Chinese listed company dataset is designed to investigate the effectiveness of CSStacking. The experimental results prove that CSStacking can forecast listed companies' financial distress five years ahead and improves the identification rate of financially distressed companies, highlighting its potential to reduce economic losses caused by misclassifying financially distressed companies. The results of comparing CSStacking with four types of benchmark models show that CSStacking performs significantly better than benchmark models. Furthermore, the findings illustrate that "asset-liability ratio", "current ratio", "quick ratio", and "industry prosperity index" are critical variables in predicting financial distress for Chinese listed companies.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] An Ensemble Cost-Sensitive One-Class Learning Framework for Malware Detection
    Liu, Jia-Chen
    Song, Jian-Feng
    Miao, Qi-Guang
    Cao, Ying
    Quan, Yi-Ning
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (05)
  • [22] A case-based reasoning driven ensemble learning paradigm for financial distress prediction with missing data
    Yu, Lean
    Li, Mengxin
    APPLIED SOFT COMPUTING, 2023, 137
  • [23] A Stacking Ensemble Learning Framework for Genomic Prediction
    Liang, Mang
    Chang, Tianpeng
    An, Bingxing
    Duan, Xinghai
    Du, Lili
    Wang, Xiaoqiao
    Miao, Jian
    Xu, Lingyang
    Gao, Xue
    Zhang, Lupei
    Li, Junya
    Gao, Huijiang
    FRONTIERS IN GENETICS, 2021, 12
  • [24] Two-Stage Cost-Sensitive Learning for Software Defect Prediction
    Liu, Mingxia
    Miao, Linsong
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON RELIABILITY, 2014, 63 (02) : 676 - 686
  • [25] A novel classifier ensemble approach for financial distress prediction
    Liang, Deron
    Tsai, Chih-Fong
    Dai, An-Jie
    Eberle, William
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 54 (02) : 437 - 462
  • [26] Cost-sensitive selection of variables by ensemble of model sequences
    Donghui Yan
    Zhiwei Qin
    Songxiang Gu
    Haiping Xu
    Ming Shao
    Knowledge and Information Systems, 2021, 63 : 1069 - 1092
  • [27] Adversarial Learning With Cost-Sensitive Classes
    Shen, Haojing
    Chen, Sihong
    Wang, Ran
    Wang, Xizhao
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (08) : 4855 - 4866
  • [28] Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction
    Tsai, Chih-Fong
    Sue, Kuen-Liang
    Hu, Ya-Han
    Chiu, Andy
    JOURNAL OF BUSINESS RESEARCH, 2021, 130 : 200 - 209
  • [29] Cost-sensitive selection of variables by ensemble of model sequences
    Yan, Donghui
    Qin, Zhiwei
    Gu, Songxiang
    Xu, Haiping
    Shao, Ming
    KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (05) : 1069 - 1092
  • [30] Robust SVM for Cost-Sensitive Learning
    Jiangzhang Gan
    Jiaye Li
    Yangcai Xie
    Neural Processing Letters, 2022, 54 : 2737 - 2758