Cost-sensitive stacking ensemble learning for company financial distress prediction

被引:2
|
作者
Wang, Shanshan [1 ]
Chi, Guotai [1 ]
机构
[1] Dalian Univ Technol, Sch Econ & Management, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Financial distress prediction; Cost-sensitive; Stacking; Ensemble learning; FEATURE-SELECTION; GENETIC ALGORITHM; TREE; FRAMEWORK; RATIOS; SYSTEM; RISK;
D O I
10.1016/j.eswa.2024.124525
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Financial distress prediction (FDP) is a topic that has received wide attention in the finance sector and data mining field. Applications of combining cost-sensitive learning with classification models to address the FDP problem have been intensely attracted. However, few combined cost-sensitive learning and Stacking to predict financial distress. In this article, a cost-sensitive learning method for FDP, namely cost-sensitive stacking (CSStacking), is put forward. In this work, a two-phase feature selection method is used to select the optimal feature subset. A CSStacking ensemble model is developed with selected features to make a final prediction. The paired T test and non-parametric Wilcoxon test are employed to check the significant differences between CSStacking and benchmark models. An experiment over Chinese listed company dataset is designed to investigate the effectiveness of CSStacking. The experimental results prove that CSStacking can forecast listed companies' financial distress five years ahead and improves the identification rate of financially distressed companies, highlighting its potential to reduce economic losses caused by misclassifying financially distressed companies. The results of comparing CSStacking with four types of benchmark models show that CSStacking performs significantly better than benchmark models. Furthermore, the findings illustrate that "asset-liability ratio", "current ratio", "quick ratio", and "industry prosperity index" are critical variables in predicting financial distress for Chinese listed companies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Cost-Sensitive Metaheuristic Optimization-Based Neural Network with Ensemble Learning for Financial Distress Prediction
    Safi, Salah Al-Deen
    Castillo, Pedro A.
    Faris, Hossam
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [2] Cost-Sensitive Ensemble Learning for Venture Capital Exit Prediction
    Fang, Heng
    Ma, Ding
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 161 - 167
  • [3] A hybrid cost-sensitive ensemble for heart disease prediction
    Qi Zhenya
    Zhang, Zuoru
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [4] Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble
    Xiong, Yueling
    Ye, Mingquan
    Wu, Changrong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [5] A hybrid cost-sensitive ensemble for heart disease prediction
    Qi Zhenya
    Zuoru Zhang
    BMC Medical Informatics and Decision Making, 21
  • [6] Cost-Sensitive Ensemble Learning for Highly Imbalanced Classification
    Johnson, Justin M.
    Khoshgoftaar, Taghi M.
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1427 - 1434
  • [7] Financial distress prediction based on ensemble feature selection and improved stacking algorithm
    Wu, Chong
    Chen, Xiaofang
    Jiang, Yongjie
    KYBERNETES, 2024,
  • [8] IMCStacking: Cost-sensitive stacking learning with feature inverse mapping for imbalanced problems
    Cao, Chenjie
    Wang, Zhe
    KNOWLEDGE-BASED SYSTEMS, 2018, 150 : 27 - 37
  • [9] Ensemble of Cost-Sensitive Hypernetworks for Class-Imbalance Learning
    Wang, Jin
    Huang, Ping-li
    Sun, Kai-wei
    Cao, Bao-lin
    Zhao, Rui
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 1883 - 1888
  • [10] Cost-sensitive Dictionary Learning for Software Defect Prediction
    Liang Niu
    Jianwu Wan
    Hongyuan Wang
    Kaiwei Zhou
    Neural Processing Letters, 2020, 52 : 2415 - 2449