Elastoplastic analysis of perforated metal sheets using transformation field analysis and finite element method

被引:3
作者
Várady Filho C.A.F. [1 ]
Cavalcante M.A.A. [2 ]
机构
[1] Centro de Tecnologia, Universidade Federal de Alagoas, Maceió
[2] Campus de Engenharias e Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo
关键词
And Computational Performance; Finite Element Method; High Order Elements; Perforated Metal Sheets; Transformation Field Analysis;
D O I
10.1590/1679-78256650
中图分类号
学科分类号
摘要
This investigation analyzes the cost-benefit ratio of the Transformation Field Analysis to compute the elastoplastic behavior of periodically perforated metal sheets. Evaluation of accuracy and computational cost are analyzed by implementing a finite element approach coupled with the Transformation Field Analysis technique for different meshes and finite element orders. Numerical studies are employed to compare Transformation Field Analysis accuracy with standard Finite Element Analysis for elastoplastic analysis of periodically perforated metal sheets. Additionally, experimental data is employed to validate the Transformation Field Analysis results. The Transformation Field Analysis requires calculating the strain concentration and influencing tensors employing the finite element method. The numerical results show the technique's capabilities and favorable scenarios, besides the influence of domain discretization and finite element order. © 2021 Christiano Augusto Ferrário Várady Filho et al.
引用
收藏
相关论文
共 28 条
[1]  
Addessi D., Sacco E., Paolone A., Cosserat model for periodic masonry deduced by nonlinear homogenization, Eur. J. Mech. A/Solids, 29, (2010)
[2]  
Alaimo G., Auricchio F., Marfia S., Sacco E., Optimization clustering technique for PieceWise Uniform Transformation Field Analysis homogenization of viscoplastic composites, Comput. Mech, 64, 6, pp. 1495-1516, (2019)
[3]  
Benveniste Y., Dvorak G. J., On a Correspondence Between Mechanical and Thermal Effects in Two-Phase Composites, Micromechanics and Inhomogeneity, pp. 65-81, (1990)
[4]  
Benveniste Y., Dvorak G. J., Some Remarks on a Class of Uniform Fields in Fibrous Composites, J. Appl. Mech, 59, 4, pp. 1030-1032, (1992)
[5]  
Cavalcante M. A. A., Pindera M.-J., Finite-volume enabled transformation field analysis of periodic materials, Int. J. Mech. Mater. Des, 9, 2, pp. 153-179, (2013)
[6]  
Cavalcante M. A. A., Pindera M.-J., Generalized FVDAM theory for elastic–plastic periodic materials, Int. J. Plast, 77, pp. 90-117, (2016)
[7]  
Covezzi F., Miranda S. de, Fritzen F., Marfia S., Sacco E., Comparison of reduced order homogenization techniques: PRBMOR, NUTFA and MxTFA, Meccanica, 53, 6, pp. 1291-1312, (2018)
[8]  
Covezzi F., Miranda S. de, Marfia S., Sacco E., Homogenization of elasticviscoplastic composites by the Mixed TFA, Comput. Methods Appl. Mech. Eng, 318, pp. 701-723, (2017)
[9]  
Drago A. S., Pindera M.-J., Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures, Compos. Sci. Technol, 67, 6, pp. 1243-1263, (2007)
[10]  
Drago A. S., Pindera M.-J., A Locally Exact Homogenization Theory for Periodic Microstructures with Isotropic Phases, J. Appl. Mech, 75, (2008)