共 34 条
[1]
Ronneberger O., Fischer P., Brox T., U-Net: Convolutional networks for biomedical image segmentation, Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Interv., pp. 234-241, (2015)
[2]
Milletari F., Navab N., Ahmadi S.-A., V-Net: Fully convolutional neural networks for volumetric medical image segmentation, Proc. 4th Int. Conf. 3D Vis., pp. 565-571, (2016)
[3]
Cicek O., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O., 3D U-Net: Learning dense volumetric segmentation from sparse annotation, Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Interv., pp. 424-432, (2016)
[4]
Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L., DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell., 40, 4, pp. 834-848, (2018)
[5]
Peng J., Wang Y., Medical image segmentation with limited supervision: A review of deep network models, IEEE Access, 9, pp. 36827-36851, (2021)
[6]
Chapelle O., Scholkopf B., Zien A., Semi-Supervised Learning, (2006)
[7]
Samuli L., Timo A., Temporal ensembling for semi-supervised learning, Proc. Int. Conf. Learn. Representations, 4, (2017)
[8]
Lee D.-H., Et al., Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks, Proc.Workshop Challenges Representation Learn., 3, (2013)
[9]
Rasmus A., Berglund M., Honkala M., Valpola H., Raiko T., Semisupervised learning with ladder networks, Adv. Neural Inf. Process. Syst., 28, (2015)
[10]
Zhu Y., Et al., Improving semantic segmentation via efficient selftraining, IEEE Trans. Pattern Anal. Mach. Intell., to Be Published