Development of discharge plasma waveguide with external magnetic field for laser plasma acceleration

被引:0
作者
Osawa M. [1 ]
Kajiuchi Y. [1 ]
Sawada K. [1 ]
Takahashi K. [1 ]
Sasaki T. [1 ]
Kikuchi T. [1 ]
机构
[1] Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka
关键词
Discharge plasma waveguide; External magnetic field; Laser-plasma acceleration; Magnetic pulse compression;
D O I
10.1541/ieejfms.140.224
中图分类号
学科分类号
摘要
To improve the acceleration length in laser plasma acceleration, we investigate the discharge plasma waveguide with a magnetic field. The discharge circuit consists of two pulsed-power circuits for preionization and main discharge. Discharges were repeated through the circuit using high-power semiconductor switches. Laser propagation characteristics of discharge plasma waveguide with the external magnetic field was observed. The results show that the reproducibility of waveguide with the external magnetic field is relatively high compared to that without magnetic field. The laser intensity gradually decreases with the strength of external magnetic field. These results suggest that the electron density profile is possible to control using the discharge plasma waveguide with an external magnetic field. © 2020 Institute of Electrical Engineers of Japan. All rights reserved.
引用
收藏
页码:224 / 229
页数:5
相关论文
共 22 条
[1]  
Takayama K., Historical evolution of modern accelerator, Atomic Energy Soc. Jpn, ATOMOΣ, 59, 3, (2017)
[2]  
Tajima T., Dawson J.M., Phys. Rev. Lett., 43, pp. 267-270, (1979)
[3]  
Pukhov A., Meyer-Ter-Vehn J., Appl. Phys. B, 74, (2002)
[4]  
Mangles S.P.D., Murphy C.D., Najmudin Z., Thomas A.G.R., Collier J.L., Dangor A.E., Divall E.J., Foster P.S., Gallacher J.G., Hooker C.J., Jaroszynski D.A., Langley A.J., Mori W.B., Norreys P.A., Tsung F.S., Viskup R., Walton B.R., Krushelnick K., Nature, 431, (2004)
[5]  
Geddes C.G.R., Toth Cs., van Tilborg J., Esarey E., Schroeder C.B., Bruhwiler D., Nieter C., Cary J., Leemans W.P., Nature, 431, (2004)
[6]  
Faure J., Glinec Y., Pukhov A., Kiselev S., Gordienko S., Lefebvre E., Rousseau J.-P., Burgy F., Malka V., Nature, 431, (2004)
[7]  
Wang X., Zgadzaj R., Fazel N., Li Z., Yi S.A., Zhang X., Henderson W., Chang Y.-Y., Korzekwa R., Tsai H.-E., Pai C.-H., Quevedo H., Dyer G., Gaul E., Martinez M., Bernstein A.C., Borger T., Spinks M., Donovan M., Khudik V., Shvets G., Ditmire T., Downer M.C., Nature Comun, 4, (2013)
[8]  
Leemans W.P., Gonsalves A.J., Mao H.-S., Nakamura K., Benedetti C., Schroeder C.B., Toth Cs., Daniels J., Mittelberger D.E., Bulanov S.S., Vay J.-L., Geddes C.G.R., Esarey E., Phys. Rev. Lett., 113, (2014)
[9]  
Hosokai T., Nakanii N., Masuda S., Novel accelerators based on laser wake-field: Latest and advance, Jpn Soc. Appl. Phys., Phonics, 43, 9, (2014)
[10]  
Steinke S., van Tilborg J., Benedetti C., Geddes C.G.R., Daniels J., Swanson K.K., Gonsalves A.J., Nakamura K., Shaw B.H., Schroeder C.B., Esarey E., Leemans W.P., Phys. Plasmas, 23, (2016)