Analytical correction of pupil-offset off-axis telescopes with complex figure errors and misalignments based on nodal aberration theory

被引:0
作者
Wen M. [1 ]
Ma H. [1 ]
Han C. [1 ]
机构
[1] Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun
来源
Optik | 2023年 / 272卷
基金
中国国家自然科学基金;
关键词
Active optics; Correction; Nodal aberration theory; Off-axis reflective telescope;
D O I
10.1016/j.ijleo.2022.170264
中图分类号
学科分类号
摘要
Active optical correction is necessary for space large-aperture optical telescopes, especially for systems with high performance requirements. This paper proposes an analytic correction method for pupil-offset off-axis optical telescopes with misalignments and complex figure errors on the basis of nodal aberration theory (NAT). An analytical description of the wave aberration contribution from the complex surfaces in off-axis telescopes is derived, which gives a unified description for the impacts of the complex surfaces located at the stop and away from the stop. Using the analytical description, a correction model for off-axis telescopes with figure errors and misalignments is established. The off-axis optical telescope with trefoil and astigmatic figure errors and lateral misalignments is taken as a typical example, the presented method is discussed. After the corresponding correction, the perturbed off-axis telescope is almost restored to the system nominal states, which can meet the specification requirements well. Finally, the Monte Carlo simulations are implemented to demonstrate the effectiveness of the presented approach. © 2022 Elsevier GmbH
引用
收藏
相关论文
共 31 条
[1]  
Wilson R.N., Active optics and the new technology telescope (NTT): the key to improved optical quality at lower cost in large astronomical telescopes, Contemp. Phys., 32, 3, pp. 157-171, (1991)
[2]  
Devaney N., Reinlein C., Lange N., Goy M., Goncharov A., Hallibert P., HYPATIA and STOIC: an active optics system for a large space telescope, Proc. SPIE, 9904, (2016)
[3]  
Kenny F., Devaney N., Goncharov A., Goy M., Reinlein C., An active optics system for large UVOIR space telescopes, Proc. SPIE, 10698, (2018)
[4]  
Devaney N., Kenny F., Goncharov A., Goy M., Reinlein C., Development of a prototype active optics system for future space telescopes, Appl. Opt., 57, 22, pp. E101-E106, (2018)
[5]  
Cook L.G., Three-mirror anastigmat used off-axis in aperture and field, Proc. SPIE, 183, pp. 207-211, (1979)
[6]  
Juranek H.J., Sand R., Schweizer J., Harnisch B., Kunkel B., Schmidt E., Litzelmann A., Schillke F., Dempewolf G., Off-axis telescopes: the future generation of Earth observation telescopes, Proc. SPIE, 3439, pp. 104-115, (1998)
[7]  
Alaluf D., Bastaits R., Wang K., Horodinca M., Martic G., Mokrani B., Preumont A., Unimorph mirror for adaptive optics in space telescopes, Appl. Opt., 57, 14, pp. 3629-3638, (2018)
[8]  
Leitz S., Gerhards M., Verpoort S., Wittrock U., Freudling M., Grzesik A., Erhard M., Hallibert P., Vibration and shock testing of a 50 mm aperture unimorph deformable mirror, Proc. SPIE, 11852, pp. 1926-1933, (2021)
[9]  
Kim S., Yang H.S., Lee Y.W., Kim S.W., Merit function regression method for efficient alignment control of two-mirror optical systems, Opt. Express, 15, 8, pp. 5059-5068, (2007)
[10]  
Upton R., Rimmele T., Hubbard R., Active optical alignment of the advanced technology solar telescope, Proc. SPIE, 6271, (2006)