Sulfur-doped manganese-cobalt hydroxide with promoted surface reconstruction for glycerol electrooxidation assisted hydrogen production

被引:16
作者
Fang, Ying [1 ,2 ]
Dai, Congfu [1 ,2 ]
Liu, Xinyu [1 ,2 ]
Wang, Yuxing [1 ,2 ]
Ju, Chang [1 ,2 ]
He, Shuijian [3 ]
Shi, Rui [1 ,2 ]
Liu, Yana [1 ,2 ]
Zhang, Jiguang [1 ,2 ]
Zhu, Yunfeng [1 ,2 ]
Wang, Jun [1 ,2 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, 30 South PuZhu Rd, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Jiangsu Collaborat Innovat Ctr Adv Inorgan Funct C, Nanjing 211816, Peoples R China
[3] Nanjing Forestry Univ, Coll Mat Sci & Engn, Coinnovat Ctr Efficient Proc & Utilizat Forest Res, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Glycerol electrooxidation; Hydrogen; Surface reconstruction; Sulfur-doping; LAYERED DOUBLE HYDROXIDE; EVOLUTION;
D O I
10.1016/j.nanoen.2024.109754
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Glycerol electrooxidation reaction (GOR), as an attractive alternative to oxygen evolution reaction, not only produces value-added formic acid but also facilitates H2 production. However, its practical application suffers from the lack of efficient electrocatalysts with high activity at low potentials. Herein, sulfur doped manganesecobalt hydroxide nanosheets on nickel foam (Mn-Co-S/NF) has been demonstrated as a promising electrocatalytic electrode for GOR, showing high current density at low potentials and high Faradaic efficiency for formate production. The combination of ex situ characterization, operando Raman analysis, and in situ electrochemical impedance spectroscopy measurement unveils that S doping leads to the formation of hierarchically porous structure with abundant oxygen vacancies during the reaction, enabling the surface reconstruction to proceed in an easier manner and to a higher degree. As a result, the reconstructed Mn-Co-S/NF possesses highly enhanced charge/mass transfer capability and enriched high valence Co active species. Impressively, in a practical flow electrolyzer, an industrial-level current density of 900 mA cm- 2 can be achieved at a cell voltage of 2.0 V. It also exhibits H2 yield rate of 3.5 mmol cm- 2 h- 1 at 200 mA cm- 2, realizing up to 30.2% energy saving efficiency compared to water electrolysis.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates [J].
Bai, Juan ;
Huang, Hao ;
Li, Fu-Min ;
Zhao, Yue ;
Chen, Pei ;
Jin, Pu-Jun ;
Li, Shu-Ni ;
Yao, Hong-Chang ;
Zeng, Jing-Hui ;
Chen, Yu .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (37) :21149-21156
[2]   Upgrading Organic Compounds through the Coupling of Electrooxidation with Hydrogen Evolution [J].
Chen, Guangbo ;
Li, Xiaodong ;
Feng, Xinliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (42)
[3]   Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction [J].
Chen, Rong ;
Hung, Sung-Fu ;
Zhou, Daojin ;
Gao, Jiajian ;
Yang, Cangjie ;
Tao, Huabing ;
Yang, Hong Bin ;
Zhang, Liping ;
Zhang, Lulu ;
Xiong, Qihua ;
Chen, Hao Ming ;
Liu, Bin .
ADVANCED MATERIALS, 2019, 31 (41)
[4]   Vacancy-induced catalytic mechanism for alcohol electrooxidation on nickel-based electrocatalyst [J].
Chen, Wei ;
Shi, Jianqiao ;
Wu, Yandong ;
Jiang, Yimin ;
Huang, Yu-Cheng ;
Zhou, Wang ;
Liu, Jilei ;
Dong, Chung-Li ;
Zou, Yuqin ;
Wang, Shuangyin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (04)
[5]   Unraveling the electrophilic oxygen-mediated mechanism for alcohol electrooxidation on NiO [J].
Chen, Wei ;
Shi, Jianqiao ;
Xie, Chao ;
Zhou, Wang ;
Xu, Leitao ;
Li, Yingying ;
Wu, Yandong ;
Wu, Binbin ;
Huang, Yu-Cheng ;
Zhou, Bo ;
Yang, Ming ;
Liu, Jilei ;
Dong, Chung-Li ;
Wang, Tehua ;
Zou, Yuqin ;
Wang, Shuangyin .
NATIONAL SCIENCE REVIEW, 2023, 10 (05)
[6]   Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles [J].
Dai, Chencheng ;
Sun, Libo ;
Liao, Hanbin ;
Khezri, Bahareh ;
Webster, Richard D. ;
Fisher, Adrian C. ;
Xu, Zhichuan J. .
JOURNAL OF CATALYSIS, 2017, 356 :14-21
[7]   Direct Electrolytic Splitting of Seawater: Opportunities and Challenges [J].
Dresp, Soeren ;
Dionigi, Fabio ;
Klingenhof, Malte ;
Strasser, Peter .
ACS ENERGY LETTERS, 2019, 4 (04) :933-942
[8]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[9]  
Fabbri E, 2017, NAT MATER, V16, P925, DOI [10.1038/NMAT4938, 10.1038/nmat4938]
[10]   High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production [J].
Fan, Linfeng ;
Ji, Yaxin ;
Wang, Genxiang ;
Chen, Junxiang ;
Chen, Kai ;
Liu, Xi ;
Wen, Zhenhai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (16) :7224-7235