Industrial Transfer Learning the Key to Transfer Artificial Intelligence

被引:0
作者
Netzer M. [1 ]
Alexander P. [1 ]
Gönnheimer P. [1 ]
Fleischer J. [1 ]
机构
[1] Institut für Produktionstechnik Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, Karlsruhe
来源
ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb | 2022年 / 117卷 / 09期
关键词
Artificial Intelligence; Generalization; OEE; Production Optimization; Transfer Learning;
D O I
10.1515/zwf-2022-1109
中图分类号
学科分类号
摘要
The main challenge in transferring machine learning methods is the high effort required to re-Train the models on target machines. Machine-individual hyperparameters as well as labeled data can be transferred and efficiently adapted to selected target machines by using transfer learning. In the following, challenges of transfer learning are presented and a procedure model is introduced to facilitate the transfer. © 2022 Walter de Gruyter GmbH, Berlin/Boston.
引用
收藏
页码:597 / 599
页数:2
相关论文
共 8 条
  • [1] Krauss J., Dorissen J., Mende H., Frye M., Maschinelles Lernen in der Produktion: Anwendungsgebiete und frei verfügbare Datensätze, Industrie 4.0 Management, 35, pp. 39-42, (2019)
  • [2] Lei Y., Yang B., Jiang X., Jia F., Li N., Nandi A., Applications of Machine Learning to Machine Fault Diagnosis: A Review and Roadmap, Mechanical Systems and Signal Processing, 138, (2020)
  • [3] Netzer M., Palenga Y., Fleischer J., Machine Tool Process Monitoring by Segmented Timeseries Anomaly Detection Using Subprocess-specific Thresholds, Prod. Eng. Res. Devel, (2022)
  • [4] Netzer M., Palenga Y., Fleischer J., Process Segmented based Intelligent Anomaly Detection in Highly Flexible Production Machines under Low Machine Data Availability, Procedia CIRP, 107, pp. 647-652, (2022)
  • [5] Maschler B., Vietz H., Tercan H., Bitter C., Meisen T., Weyrich M., Insights and Example Use Cases on Industrial Transfer Learning, Procedia CIRP, 107, pp. 511-516, (2022)
  • [6] Zhuang F., Qi Z., Duan K., Xi D., Zhu Y., Zhu H., Xiong H., He Q., A Comprehensive Survey on Transfer Learning, Proceedings of the IEEE, pp. 1-34, (2020)
  • [7] Wang K., Zhou X., Liang W., Yan Z., She J., Federated Transfer Learning Based Cross-Domain Prediction for Smart Manufacturing, IEEE Transactions on Industrial Informatics, 18, 6, pp. 4088-4096, (2022)
  • [8] Zhang B., Chen C., Wang L., Privacypreserving Transfer Learning via Secure Maximum Mean Discrepancy, ArXiv, (2020)