Partial class activation mapping guided graph convolution cascaded U-Net for retinal vessel segmentation

被引:2
|
作者
Wang Z. [1 ]
Jia L.V. [1 ,2 ]
Liang H. [1 ]
机构
[1] College of Computer and Information Sciences, Chongqing Normal University, Chongqing
[2] National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing
基金
中国国家自然科学基金;
关键词
Feature consistency; Graph convolutional network; Medical image segmentation; Retinal vessel segmentation; U-Net;
D O I
10.1016/j.compbiomed.2024.108736
中图分类号
学科分类号
摘要
Accurate segmentation of retinal vessels in fundus images is of great importance for the diagnosis of numerous ocular diseases. However, due to the complex characteristics of fundus images, such as various lesions, image noise and complex background, the pixel features of some vessels have significant differences, which makes it easy for the segmentation networks to misjudge these vessels as noise, thus affecting the accuracy of the overall segmentation. Therefore, accurately segment retinal vessels in complex situations is still a great challenge. To address the problem, a partial class activation mapping guided graph convolution cascaded U-Net for retinal vessel segmentation is proposed. The core idea of the proposed network is first to use the partial class activation mapping guided graph convolutional network to eliminate the differences of local vessels and generate feature maps with global consistency, and subsequently these feature maps are further refined by segmentation network U-Net to achieve better segmentation results. Specifically, a new neural network block, called EdgeConv, is stacked multiple layers to form a graph convolutional network to realize the transfer an update of information from local to global, so as gradually enhance the feature consistency of graph nodes. Simultaneously, in an effort to suppress the noise information that may be transferred in graph convolution and thus reduce adverse effects of noise on segmentation results, the partial class activation mapping is introduced. The partial class activation mapping can guide the information transmission between graph nodes and effectively activate vessel feature through classification labels, thereby improving the accuracy of segmentation. The performance of the proposed method is validated on four different fundus image datasets. Compared with existing state-of-the-art methods, the proposed method can improve the integrity of vessel to a certain extent when the pixel features of local vessels are significantly different, caused by objective factors such as inappropriate illumination and exudates. Moreover, the proposed method shows robustness when segmenting complex retinal vessels. © 2024
引用
收藏
相关论文
共 50 条
  • [21] Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
    Liu, Congjun
    Gu, Penghui
    Xiao, Zhiyong
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [22] A retinal vessel segmentation method based improved U-Net model
    Sun, Kun
    Chen, Yang
    Chao, Yi
    Geng, Jiameng
    Chen, Yinsheng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [23] An improved U-net based retinal vessel image segmentation method
    Ren, Kan
    Chang, Longdan
    Wan, Minjie
    Gu, Guohua
    Chen, Qian
    HELIYON, 2022, 8 (10)
  • [24] The study of retinal vessel segmentation based on improved U-net algorithm
    Sheni, Tongping
    Menchita, Dumlao
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 518 - 522
  • [25] Improved U-Net Segmentation Algorithm for the Retinal Blood Vessel Images
    Li Daxiang
    Zhang Zhen
    ACTA OPTICA SINICA, 2020, 40 (10)
  • [26] Retinal vessel segmentation using dense U-net with multiscale inputs
    Yue, Kejuan
    Zou, Beiji
    Chen, Zailiang
    Liu, Qing
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [27] Automatic Retinal Vessel Segmentation Based on an Improved U-Net Approach
    Huang, Zihe
    Fang, Ying
    Huang, He
    Xu, Xiaomei
    Wang, Jiwei
    Lai, Xiaobo
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [28] Retinal Vessel Segmentation Method Based on Improved Deep U-Net
    Cai, Yiheng
    Li, Yuanyuan
    Gao, Xurong
    Guo, Yajun
    BIOMETRIC RECOGNITION (CCBR 2019), 2019, 11818 : 321 - 328
  • [29] Retinal Vessel Segmentation Method Based on Improved U-NET Network
    Chang, Longdan
    Ren, Kan
    Wan, Minjie
    Chen, Qian
    AOPC 2021: NOVEL TECHNOLOGIES AND INSTRUMENTS FOR ASTRONOMICAL MULTI-BAND OBSERVATIONS, 2021, 12069
  • [30] Retinal blood vessel segmentation based on Densely Connected U-Net
    Cheng, Yinlin
    Ma, Mengnan
    Zhang, Liangjun
    Jin, ChenJin
    Ma, Li
    Zhou, Yi
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 3088 - 3108