3D printing of HA / PCL composite tissue engineering scaffolds

被引:124
|
作者
Jiao Z. [1 ]
Luo B. [1 ]
Xiang S. [1 ]
Ma H. [1 ]
Yu Y. [1 ]
Yang W. [1 ]
机构
[1] State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing
来源
Advanced Industrial and Engineering Polymer Research | 2019年 / 2卷 / 04期
关键词
Composites; Fused deposition modeling FDM; Hydroxyapatite; Mechanical properties; Polycaprolactone; Porosity; Tissue engineering scaffolds;
D O I
10.1016/j.aiepr.2019.09.003
中图分类号
学科分类号
摘要
Here, the internal structure and mechanical properties of the hydroxyapatite/polycaprolactone scaffolds, prepared by fused deposition modeling (FDM) technique, were explored. Using hydroxyapatite (HA) and polycaprolactone (PCL) as raw materials, nano-HA/PCL and micro-HA/PCL that composite with 20 wt% HA were prepared by melt blending technology, and HA/PCL composite tissue engineering scaffolds were prepared by self-developed melt differential FDM 3D printer. From the observation under microscope, it was found that the prepared nano-HA/PCL and micro-HA/PCL tissue engineering scaffolds have uniformly distributed and interconnected nearly rectangular pores. By observing the cross-sectional view of the nano-HA/PCL scaffold and the micro-HA/PCL scaffold, it is known that the HA particles in the nano-HA/PCL scaffold are evenly distributed and the HA particles in the micro-HA/PCL scaffold are agglomerated, which attribute nano-HA/PCL scaffolds with higher tensile strength and flexural strength than the micro-HA/PCL scaffolds. The tensile strength and flexural strength of the nano-HA/PCL specimens were 23.29 MPa and 21.39 MPa, respectively, which were 26.0% and 33.1% higher than those of the pure PCL specimens. Therefore, the bioactive nano-HA/PCL composite scaffolds prepared by melt differential FDM 3D printers should have broader application prospects in bone tissue engineering. © 2019 Kingfa SCI. & TECH. CO., LTD.
引用
收藏
页码:196 / 202
页数:6
相关论文
共 50 条
  • [41] 3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques
    Zimmerling, Amanda
    Yazdanpanah, Zahra
    Cooper, David M. L.
    Johnston, James D.
    Chen, Xiongbiao
    BIOMATERIALS RESEARCH, 2021, 25 (01)
  • [42] Convergence of 3D Bioprinting and Nanotechnology in Tissue Engineering Scaffolds
    Zhang, Shike
    Chen, Xin
    Shan, Mengyao
    Hao, Zijuan
    Zhang, Xiaoyang
    Meng, Lingxian
    Zhai, Zhen
    Zhang, Linlin
    Liu, Xuying
    Wang, Xianghong
    BIOMIMETICS, 2023, 8 (01)
  • [43] Advances in 3D Printing for Tissue Engineering
    Zaszczynska, Angelika
    Moczulska-Heljak, Maryla
    Gradys, Arkadiusz
    Sajkiewicz, Pawel
    MATERIALS, 2021, 14 (12)
  • [44] Polymer Bioprocessing to Fabricate 3D Scaffolds for Tissue Engineering
    Guarino, V.
    D'Albore, M.
    Altobelli, R.
    Ambrosio, L.
    INTERNATIONAL POLYMER PROCESSING, 2016, 31 (05) : 587 - 597
  • [45] 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering
    De Mori, Arianna
    Fernandez, Marta Pena
    Blunn, Gordon
    Tozzi, Gianluca
    Roldo, Marta
    POLYMERS, 2018, 10 (03)
  • [46] Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering
    Wang, Weiguang
    Caetano, Guilherme
    Ambler, William Stephen
    Blaker, Jonny James
    Frade, Marco Andrey
    Mandal, Parthasarathi
    Diver, Carl
    Bartolo, Paulo
    MATERIALS, 2016, 9 (12)
  • [47] 3D printing of polymeric tissue engineering scaffolds using open-source fused deposition modeling
    Alagoz, Ayse Selcen
    Hasirci, Vasif
    EMERGENT MATERIALS, 2020, 3 (04) : 429 - 439
  • [48] Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis
    Ma, Jingqi
    Lin, Lili
    Zuo, Yi
    Zou, Qin
    Ren, Xin
    Li, Jidong
    Li, Yubao
    RSC ADVANCES, 2019, 9 (10): : 5338 - 5346
  • [49] Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering
    Gharibshahian, Maliheh
    Salehi, Majid
    Beheshtizadeh, Nima
    Kamalabadi-Farahani, Mohammad
    Atashi, Amir
    Nourbakhsh, Mohammad-Sadegh
    Alizadeh, Morteza
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [50] 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications
    Cox, Sophie C.
    Thornby, John A.
    Gibbons, Gregory J.
    Williams, Mark A.
    Mallick, Kajal K.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 47 : 237 - 247