共 42 条
[1]
Shao J., Liang X., Kumar S., Comparison of split-step Fourier schemes for simulating fiber optic communication systems, IEEE Photonics J., 6, (2014)
[2]
Poggiolini P., Bosco G., Carena A., Curri V., Jiang Y., Forghieri F., The GN-model of fiber non-linear propagation and its applications, J. Lightwave Technol., 32, pp. 694-721, (2014)
[3]
Pointurier Y., Machine learning techniques for quality of transmission estimation in optical networks, J. Opt. Commun. Netw., 13, pp. B60-B71, (2021)
[4]
Wide-area Optical Backbone Performance, (2017)
[5]
Chouman H., Djukic P., Tremblay C., Desrosiers C., Forecasting lightpath QoT with deep neural networks, Optical Fiber Communication Conference, (2021)
[6]
Jimenez T., Aguado J.C., De Miguel I., Barroso R.J.D., Fernandez N., Angelou M., Sanchez D., Merayo N., Fernandez P., Atallah N., Lorenzo R.M., Tomkos I., A cognitive system for fast quality of transmission estimation in core optical networks, Optical Fiber Communication Conference, (2012)
[7]
Jimenez T., Aguado J.C., De Miguel I., Barroso R.J.D., Angelou M., Merayo N., Fernandez P., Lorenzo R.M., Tomkos I., Abril E.J., A cognitive quality of transmission estimator for core optical networks, J. Lightwave Technol., 31, pp. 942-951, (2013)
[8]
Panayiotou T., Chatzis S.P., Ellinas G., Performance analysis of a data-driven quality-of-transmission decision approach on a dynamic multicast-capable metro optical network, J. Opt. Commun. Netw., 9, pp. 98-108, (2017)
[9]
Barletta L., Giusti A., Rottondi C., Tornatore M., QoT estimation for unestablished lighpaths using machine learning, Optical Fiber Communication Conference, (2017)
[10]
Rottondi C., Barletta L., Giusti A., Tornatore M., Machinelearning method for quality of transmission prediction of unestablished lightpaths, J. Opt. Commun. Netw., 10, pp. A286-A297, (2018)