Temperature-insensitive curvature sensor based on Bragg gratings written in strongly coupled multicore fiber

被引:21
作者
Liu Z. [1 ]
Zheng D. [1 ]
Madrigal J. [2 ]
Villatoro J. [3 ,4 ]
Antonio-Lopez J.E. [5 ]
Schülzgen A. [5 ]
Amezcua-Correa R. [5 ]
Zou X. [1 ]
Pan W. [1 ]
Sales S. [2 ]
机构
[1] Center for Information Photonics and Communications, School of Information Science and Technology, Southwest Jiaotong University, Chengdu
[2] Photonics Research Labs, ITEAM Research Institute, Universitat Politècnica de València, Camino de Vera, s/n, Valencia
[3] Department of Communications Engineering, University of the Basque Country UPV/EHU, Plaza Torres Quevedo 1, Bilbao
[4] IKERBASQUE-Basque Foundation for Science, Bilbao
[5] University of Central Florida, CREOL, The College of Optics and Photonics, Orlando, 32816, FL
基金
中国国家自然科学基金;
关键词
Conventional single-mode fibers - Cross sensitivity - Curvature sensor - Intensity demodulation - Multicore fiber - Reflection spectra - Resonance peak - Temperature-insensitive;
D O I
10.1364/OL.432889
中图分类号
学科分类号
摘要
A novel temperature-insensitive optical curvature sensor has been proposed and demonstrated. The sensor is fabricated by inscribing fiber Bragg gratings with short lengths into a piece of strongly coupled multicore fiber (SCMCF) and spliced to the conventional single-mode fiber. Due to the two supermodes being supported by the SCMCF, two resonance peaks, along with a deep notch between them, were observed in the reflection spectrum. The experimental results show that the depth of the notch changes with the curvature with a sensitivity up to 15.9 dB/m−1 in a lower curvature range. Besides, thanks to the unique property of the proposed sensor, the notch depth barely changes with temperature. Based on the intensity demodulation of the notch depth, the temperature-insensitive curvature sensor is achieved with the cross sensitivity between the temperature, and the curvature is as low as 0.001 m−1/◦C. © 2021 Optical Society of America
引用
收藏
页码:3933 / 3936
页数:3
相关论文
共 19 条
[1]  
He X., Ran Z. L., Yang T. T., Xiao Y. Q., Wang Y. X., Rao Y. J., Opt. Express, 27, (2019)
[2]  
Fu C. L., Wang Y. P., Liu S., Bai Z. Y., Tang J., Shao L. P., Liu X. Y., Opt. Lett, 44, (2019)
[3]  
Zhang Y. S., Zhang Y. X., Zhang W. G., Yu L., Kong L. X., Yan T. Y., Chen L., Appl. Opt, 59, (2020)
[4]  
Zhang S. X., Liu Y., Guo H. Y., Zhou A., Yuan L. B., IEEE Sens. J, 19, (2019)
[5]  
Awaji Y., Sakaguchi J., Puttnam B. J., Luis R. S., Mendinueta J. M. D., Klaus W., Wada N., Opt. Fiber Technol, 35, (2017)
[6]  
Gasulla I., Barrera D., Hervas J., Sales S., Sci. Rep, 7, (2017)
[7]  
Zhao Z. Y., Liu Z. Y., Tang M., Fu S. N., Wang L., Guo N., Jin C., Tam H. Y., Lu C., Opt. Express, 26, (2018)
[8]  
Moore J. P., Rogge M. D., Opt. Express, 20, (2012)
[9]  
Zheng D., Cai Z. Y., Floris I., Madrigal J., Pan W., Zou X. H., Sales S., Opt. Lett, 44, (2019)
[10]  
Feng Q., Liang Y. B., Tang M., Ou J. P., Measurement, 164, (2020)