A review of intelligent diagnosis methods of imaging gland cancer based on machine learning

被引:0
|
作者
Jiang H. [1 ]
Sun W.-J. [1 ]
Guo H.-F. [1 ]
Zeng J.-Y. [1 ]
Xue X. [1 ]
Li S. [1 ]
机构
[1] School of computer science, Beijing University of Aeronautics and Astronautics, Beijing
来源
Virtual Reality and Intelligent Hardware | 2023年 / 5卷 / 04期
关键词
Deep learning; Gland cancer; Intelligent diagnosis; Machine learning; Multi-modal medical images;
D O I
10.1016/j.vrih.2022.09.002
中图分类号
学科分类号
摘要
Background: Gland cancer is a high-incidence disease endangering human health, and its early detection and treatment need efficient, accurate and objective intelligent diagnosis methods. In recent years, the advent of machine learning techniques has yielded satisfactory results in the intelligent gland cancer diagnosis based on clinical images, greatly improving the accuracy and efficiency of medical image interpretation while reducing the workload of doctors. The foci of this paper is to review, classify and analyze the intelligent diagnosis methods of imaging gland cancer based on machine learning and deep learning. To start with, the paper presents a brief introduction about some basic imaging principles of multi-modal medical images, such as the commonly used CT, MRI, US, PET, and pathology. In addition, the intelligent diagnosis methods of imaging gland cancer are further classified into supervised learning and weakly-supervised learning. Supervised learning consists of traditional machine learning methods like KNN, SVM, multilayer perceptron, etc. and deep learning methods evolving from CNN, meanwhile, weakly-supervised learning can be further categorized into active learning, semi-supervised learning and transfer learning. The state-of-the-art methods are illustrated with implementation details, including image segmentation, feature extraction, the optimization of classifiers, and their performances are evaluated through indicators like accuracy, precision and sensitivity. To conclude, the challenges and development trend of intelligent diagnosis methods of imaging gland cancer are addressed and discussed. © 2022 Beijing Zhongke Journal Publishing Co. Ltd
引用
收藏
页码:293 / 316
页数:23
相关论文
共 50 条
  • [21] Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning
    Li, Mingyang
    Liu, Hongyu
    Li, Yixuan
    Wang, Zejun
    Yuan, Yuan
    Dai, Honglin
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 456 - 462
  • [22] Image-Based Cardiac Diagnosis With Machine Learning: A Review
    Martin-Isla, Carlos
    Campello, Victor M.
    Izquierdo, Cristian
    Raisi-Estabragh, Zahra
    Baessler, Bettina
    Petersen, Steffen E.
    Lekadir, Karim
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [23] Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A Review
    Mao, Lingchao
    Wang, Hairong
    Hu, Leland S.
    Tran, Nhan L.
    Canoll, Peter D.
    Swanson, Kristin R.
    Li, Jing
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024,
  • [24] Machine-Learning-Assisted Intelligent Imaging Flow Cytometry: A Review
    Luo, Shaobo
    Shi, Yuzhi
    Chin, Lip Ket
    Hutchinson, Paul Edward
    Zhang, Yi
    Chierchia, Giovanni
    Talbot, Hugues
    Jiang, Xudong
    Bourouina, Tarik
    Liu, Ai-Qun
    ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (11)
  • [25] Statistical and Machine Learning Analysis in Brain-Imaging Genetics: A Review of Methods
    Connor L. Cheek
    Peggy Lindner
    Elena L. Grigorenko
    Behavior Genetics, 2024, 54 : 233 - 251
  • [26] Statistical and Machine Learning Analysis in Brain-Imaging Genetics: A Review of Methods
    Cheek, Connor L.
    Lindner, Peggy
    Grigorenko, Elena L.
    BEHAVIOR GENETICS, 2024, 54 (03) : 233 - 251
  • [27] Bearing Fault Diagnosis Based on Artificial Intelligence Methods: Machine Learning and Deep Learning
    Ghorbel, Ahmed
    Eddai, Sarra
    Limam, Bouthayna
    Feki, Nabih
    Haddar, Mohamed
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [28] Fault Diagnosis Methods Based on Machine Learning and its Applications for Wind Turbines: A Review
    Sun, Tongda
    Yu, Gang
    Gao, Mang
    Zhao, Lulu
    Bai, Chen
    Yang, Wanqian
    IEEE ACCESS, 2021, 9 : 147481 - 147511
  • [29] Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging
    Currie, Geoff
    Hawk, K. Elizabeth
    Rohren, Eric
    Vial, Alanna
    Klein, Ran
    JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2019, 50 (04) : 477 - 487
  • [30] Intelligent Ultrasound Imaging for Enhanced Breast Cancer Diagnosis: Ensemble Transfer Learning Strategies
    Rao, Kuncham Sreenivasa
    Terlapu, Panduranga Vital
    Jayaram, D.
    Raju, Kalidindi Kishore
    Kumar, G. Kiran
    Pemula, Rambabu
    Gopalachari, M. Venu
    Rakesh, S.
    IEEE ACCESS, 2024, 12 : 22243 - 22263