A review of intelligent diagnosis methods of imaging gland cancer based on machine learning

被引:0
|
作者
Jiang H. [1 ]
Sun W.-J. [1 ]
Guo H.-F. [1 ]
Zeng J.-Y. [1 ]
Xue X. [1 ]
Li S. [1 ]
机构
[1] School of computer science, Beijing University of Aeronautics and Astronautics, Beijing
来源
Virtual Reality and Intelligent Hardware | 2023年 / 5卷 / 04期
关键词
Deep learning; Gland cancer; Intelligent diagnosis; Machine learning; Multi-modal medical images;
D O I
10.1016/j.vrih.2022.09.002
中图分类号
学科分类号
摘要
Background: Gland cancer is a high-incidence disease endangering human health, and its early detection and treatment need efficient, accurate and objective intelligent diagnosis methods. In recent years, the advent of machine learning techniques has yielded satisfactory results in the intelligent gland cancer diagnosis based on clinical images, greatly improving the accuracy and efficiency of medical image interpretation while reducing the workload of doctors. The foci of this paper is to review, classify and analyze the intelligent diagnosis methods of imaging gland cancer based on machine learning and deep learning. To start with, the paper presents a brief introduction about some basic imaging principles of multi-modal medical images, such as the commonly used CT, MRI, US, PET, and pathology. In addition, the intelligent diagnosis methods of imaging gland cancer are further classified into supervised learning and weakly-supervised learning. Supervised learning consists of traditional machine learning methods like KNN, SVM, multilayer perceptron, etc. and deep learning methods evolving from CNN, meanwhile, weakly-supervised learning can be further categorized into active learning, semi-supervised learning and transfer learning. The state-of-the-art methods are illustrated with implementation details, including image segmentation, feature extraction, the optimization of classifiers, and their performances are evaluated through indicators like accuracy, precision and sensitivity. To conclude, the challenges and development trend of intelligent diagnosis methods of imaging gland cancer are addressed and discussed. © 2022 Beijing Zhongke Journal Publishing Co. Ltd
引用
收藏
页码:293 / 316
页数:23
相关论文
共 50 条
  • [1] A Review on Machine Learning and Deep Learning Based Systems for the Diagnosis of Brain Cancer
    Saha P.
    Das S.K.
    Das R.
    SN Computer Science, 5 (1)
  • [2] Machine learning in breast cancer imaging: a review on data, models and methods
    Grinet, Macro S. V. M.
    Gouveia, Ana I. R.
    Gomes, Abel J. P.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 11 (07)
  • [3] Bladder cancer in the time of machine learning: Intelligent tools for diagnosis and management
    Gandi, Carlo
    Vaccarella, Luigi
    Bientinesi, Riccardo
    Racioppi, Marco
    Pierconti, Francesco
    Sacco, Emilio
    UROLOGIA JOURNAL, 2021, 88 (02) : 94 - 102
  • [4] Machine learning and deep learning techniques for breast cancer diagnosis and classification: a comprehensive review of medical imaging studies
    Radak, Mehran
    Lafta, Haider Yabr
    Fallahi, Hossein
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (12) : 10473 - 10491
  • [5] Machine learning and deep learning techniques for breast cancer diagnosis and classification: a comprehensive review of medical imaging studies
    Mehran Radak
    Haider Yabr Lafta
    Hossein Fallahi
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 10473 - 10491
  • [6] Research related to the diagnosis of prostate cancer based on machine learning medical images: A review
    Chen, Xinyi
    Liu, Xiang
    Wu, Yuke
    Wang, Zhenglei
    Wang, Shuo Hong
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 181
  • [7] Review of Imaging Device Identification Based on Machine Learning
    Wu, Jian
    Feng, Kai
    Tian, Min
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 105 - 110
  • [8] Machine fault detection methods based on machine learning algorithms: A review
    Ciaburro, Giuseppe
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (11) : 11453 - 11490
  • [9] Machine Learning Methods for Fault Diagnosis in AC Microgrids: A Systematic Review
    Zaben, Muiz M.
    Worku, Muhammed Y.
    Hassan, Mohamed A.
    Abido, Mohammad A.
    IEEE ACCESS, 2024, 12 : 20260 - 20298
  • [10] A Scoping Review of Infrared Spectroscopy and Machine Learning Methods for Head and Neck Precancer and Cancer Diagnosis and Prognosis
    Alajaji, Shahd A.
    Sabzian, Roya
    Wang, Yong
    Sultan, Ahmed S.
    Wang, Rong
    CANCERS, 2025, 17 (05)