Formal methods enhance deep learning for smart cities: Challenges and future directions

被引:0
|
作者
Ma, Meiyi [1 ]
机构
[1] Department of Computer Science, Vanderbilt University, United States
来源
XRDS: Crossroads | 2022年 / 28卷 / 03期
关键词
Deep learning - Smart city;
D O I
10.1145/3522694
中图分类号
学科分类号
摘要
Rigorous approaches based on formal methods have the potential to fundamentally improve many aspects of deep learning. This article discusses the challenges and future directions of formal methods enhanced deep learning for smart cities. © 2022 ACM.
引用
收藏
页码:42 / 46
相关论文
empty
未找到相关数据