Acoustic Emission Recognition Based on a Three-Streams Neural Network with Attention

被引:0
|
作者
Xiaofeng K. [1 ]
Kun H. [2 ]
Li R. [3 ]
机构
[1] College of Information and Engineering, Xuzhou University of Technology, Jiangsu, Xuzhou
[2] College of Electrical and Power Engineering, China University of Mining and Technology, Jiangsu, Xuzhou
[3] Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth
来源
Computer Systems Science and Engineering | 2023年 / 46卷 / 03期
基金
英国科研创新办公室;
关键词
acoustic emission; attention mechanism; Convolutional neural network; fault detection;
D O I
10.32604/csse.2023.025908
中图分类号
学科分类号
摘要
Acoustic emission (AE) is a nondestructive real-time monitoring technology, which has been proven to be a valid way of monitoring dynamic damage to materials. The classification and recognition methods of the AE signals of the rotor are mostly focused on machine learning. Considering that the huge success of deep learning technologies, where the Recurrent Neural Network (RNN) has been widely applied to sequential classification tasks and Convolutional Neural Network (CNN) has been widely applied to image recognition tasks. A novel three-streams neural network (TSANN) model is proposed in this paper to deal with fault detection tasks. Based on residual connection and attention mechanism, each stream of the model is able to learn the most informative representation from Mel Frequency Cepstrum Coefficient (MFCC), Tempogram, and short-time Fourier transform (STFT) spectral respectively. Experimental results show that, in comparison with traditional classification methods and single-stream CNN networks, TSANN achieves the best overall performance and the classification error rate is reduced by up to 50%, which demonstrates the availability of the model proposed. © 2023 CRL Publishing. All rights reserved.
引用
收藏
页码:2963 / 2974
页数:11
相关论文
共 50 条
  • [21] Facial Expression Recognition Network Based on Attention Mechanism
    Zhang W.
    Li P.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (07): : 706 - 713
  • [22] Pattern recognition of surface electromyography based on multi-scale convolutional neural network with attention mechanism
    Wang B.
    Zheng H.
    Jie J.
    Zhang M.
    Ke Y.
    Liu Y.
    International Journal of Wireless and Mobile Computing, 2022, 23 (3-4) : 293 - 301
  • [23] Convolutional neural network based on attention mechanism for reading recognition of pointer-type meter images
    Zhang S.
    Wan J.
    Wang H.
    Guan M.
    Yang B.
    Li F.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2022, 42 (04): : 218 - 224
  • [24] A Novel Attention-Based Convolution Neural Network for Human Activity Recognition
    Zheng, Ge
    IEEE SENSORS JOURNAL, 2021, 21 (23) : 27015 - 27025
  • [25] Acoustic Emission Source Localization On A Pipeline Using Convolutional Neural Network
    Heng, Hoo Yu
    Shanmugam, Jeeva Sathya Theesar
    Nair, Madhavan A. L. Balan
    Gnanamuthu, Ezra Morris Abraham
    2018 IEEE CONFERENCE ON BIG DATA AND ANALYTICS (ICBDA), 2018, : 93 - 98
  • [26] Convolutional neural network-based fracture detection in spectrogram of acoustic emission
    Monika, R.
    Deivalakshmi, S.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4059 - 4074
  • [27] Acoustic emission monitoring for damage diagnosis in composite laminates based on deep learning with attention mechanism
    Du, Jinbo
    Zeng, Jie
    Chen, Chao
    Ni, Minxuan
    Guo, Changlong
    Zhang, Shuai
    Wang, Han
    Ding, Huiming
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 222
  • [28] A Neural Network Based Text Classification with Attention Mechanism
    Lu SiChen
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 333 - 338
  • [29] DOCUMENT CLASSIFICATION BASED ON CONVOLUTIONAL NEURAL NETWORK AND HIERARCHICAL ATTENTION NETWORK
    Cheng, Y.
    Ye, Z.
    Wang, M.
    Zhang, Q.
    NEURAL NETWORK WORLD, 2019, 29 (02) : 83 - 98
  • [30] Influence of acoustic field interference structure on underwater acoustic target recognition based on a convolutional neural network
    Zhao, Meng
    Wang, Zhenzhu
    Wang, Wenbo
    Ren, Qunyan
    Ma, Li
    WUWNET'21: THE 15TH ACM INTERNATIONAL CONFERENCE ON UNDERWATER NETWORKS & SYSTEMS, 2021,