Machine-Learning-Based Parameter Estimation of Gaussian Quantum States

被引:8
|
作者
Kundu N.K. [1 ,2 ]
McKay M.R. [1 ,2 ,3 ]
Mallik R.K. [4 ]
机构
[1] Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay
[2] Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay
[3] Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, 3010, VIC
[4] Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi
来源
IEEE Transactions on Quantum Engineering | 2022年 / 3卷
关键词
Bayes methods; Estimation; Machine learning; Metrology; Parameter estimation; Phase estimation; Quantum state;
D O I
10.1109/TQE.2021.3137559
中图分类号
学科分类号
摘要
In this article, we propose a machine-learning framework for parameter estimation of single-mode Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior distributions from measured data. For phase-space displacement and squeezing parameter estimation, this is achieved by introducing expectation–maximization (EM)-based algorithms, while for phase parameter estimation, an empirical Bayes method is applied. The estimated prior distribution parameters along with the observed data are used for finding the optimal Bayesian estimate of the unknown displacement, squeezing, and phase parameters. Our simulation results show that the proposed algorithms have estimation performance that is very close to that of “Genie Aided” Bayesian estimators, which assume perfect knowledge of the prior parameters. In practical scenarios, when numerical values of the prior distribution parameters are not known beforehand, our proposed methods can be used to find optimal Bayesian estimates from the observed measurement data. © 2022 IEEE. All right reserved.
引用
收藏
相关论文
共 50 条
  • [31] A Machine-Learning-Based Detection Method for Snoring and Coughing
    Yang, Chun-Hung
    Kuo, Yung-Ming
    Chen, I-Chun
    Lin, Fan-Min
    Chung, Pau-Choo
    JOURNAL OF INTERNET TECHNOLOGY, 2022, 23 (06): : 1233 - 1244
  • [32] Tools for machine-learning-based empirical autotuning and specialization
    Chaimov, Nicholas
    Biersdorff, Scott
    Malony, Allen D.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2013, 27 (04) : 403 - 411
  • [33] Machine-learning-based interatomic potentials for advanced manufacturing
    Yu, Wei
    Ji, Chaoyue
    Wan, Xuhao
    Zhang, Zhaofu
    Robertson, John
    Liu, Sheng
    Guo, Yuzheng
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2021, 1 (02): : 159 - 172
  • [34] piRNA in Machine-Learning-Based Diagnostics of Colorectal Cancer
    Li, Sienna
    Kouznetsova, Valentina L.
    Kesari, Santosh
    Tsigelny, Igor F.
    MOLECULES, 2024, 29 (18):
  • [35] Fast Affine Motion Estimation for VVC using Machine-Learning-Based Early Search Termination
    Duarte, Adson
    Goncalves, Paulo
    Agostini, Luciano
    Zatt, Bruno
    Correa, Guilherme
    Porto, Marcelo
    Palomino, Daniel
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1958 - 1962
  • [36] A Machine-Learning-Based Channel Assignment Algorithm for IoT
    Ma, Jing
    Nagatsuma, Tomoya
    Kim, Song-Ju
    Hasegawa, Mikio
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 467 - 472
  • [37] Machine-learning-based classification of Glioblastoma in multiparametric MRI
    Cui, Ge
    Jeong, Jiwoong Jason
    Lei, Yang
    Wang, Tonghe
    Liu, Tian
    Curran, Walter J.
    Mao, Hui
    Yang, Xiaofeng
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [38] Machine-Learning-Based Device for Visually Impaired Person
    Priya, Tuhina
    Sravya, Kotla Sai
    Umamaheswari, S.
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, 2020, 1056 : 79 - 88
  • [39] Machine-learning-based pressure reconstruction with moving boundaries
    Wang, Hongping
    Wu, Fan
    Liu, Yi
    He, Xinyi
    Feng, Shuyi
    Wang, Shizhao
    JOURNAL OF FLUID MECHANICS, 2025, 1008
  • [40] A MACHINE-LEARNING-BASED ALGORITHM FOR DETECTING A MOVING OBJECT
    Zhu, Anmin
    Chen, Yanming
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2016, 31 (05) : 402 - 408