Machine-Learning-Based Parameter Estimation of Gaussian Quantum States

被引:8
|
作者
Kundu N.K. [1 ,2 ]
McKay M.R. [1 ,2 ,3 ]
Mallik R.K. [4 ]
机构
[1] Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay
[2] Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay
[3] Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, 3010, VIC
[4] Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi
来源
IEEE Transactions on Quantum Engineering | 2022年 / 3卷
关键词
Bayes methods; Estimation; Machine learning; Metrology; Parameter estimation; Phase estimation; Quantum state;
D O I
10.1109/TQE.2021.3137559
中图分类号
学科分类号
摘要
In this article, we propose a machine-learning framework for parameter estimation of single-mode Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior distributions from measured data. For phase-space displacement and squeezing parameter estimation, this is achieved by introducing expectation–maximization (EM)-based algorithms, while for phase parameter estimation, an empirical Bayes method is applied. The estimated prior distribution parameters along with the observed data are used for finding the optimal Bayesian estimate of the unknown displacement, squeezing, and phase parameters. Our simulation results show that the proposed algorithms have estimation performance that is very close to that of “Genie Aided” Bayesian estimators, which assume perfect knowledge of the prior parameters. In practical scenarios, when numerical values of the prior distribution parameters are not known beforehand, our proposed methods can be used to find optimal Bayesian estimates from the observed measurement data. © 2022 IEEE. All right reserved.
引用
收藏
相关论文
共 50 条
  • [21] Machine-Learning-Based Approach for Virtual Machine Allocation and Migration
    Talwani, Suruchi
    Singla, Jimmy
    Mathur, Gauri
    Malik, Navneet
    Jhanjhi, N. Z.
    Masud, Mehedi
    Aljahdali, Sultan
    ELECTRONICS, 2022, 11 (19)
  • [22] Quantum coherence and parameter estimation for mixed entangled coherent states
    Algarni, Mariam
    Berrada, K.
    Abdel-Khalek, S.
    MODERN PHYSICS LETTERS A, 2022, 37 (24)
  • [23] Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy
    Ding, Jianli
    Yang, Aixia
    Wang, Jingzhe
    Sagan, Vasit
    Yu, Danlin
    PEERJ, 2018, 6
  • [24] Routing and Spectrum Assignment Integrating Machine-Learning-Based QoT Estimation in Elastic Optical Networks
    Salani, Matteo
    Rottondi, Cristina
    Tornatore, Massimo
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2019), 2019, : 1738 - 1746
  • [25] Discriminating Quantum States with Quantum Machine Learning
    Quiroga, David
    Date, Prasanna
    Pooser, Raphael
    2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, : 56 - 63
  • [26] Discriminating Quantum States with Quantum Machine Learning
    Quiroga, David
    Date, Prasanna
    Pooser, Raphael
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 481 - 482
  • [27] Machine-Learning-Based Accurate Finger Joint Stiffness Estimation With Joint Modular Soft Actuators
    Matsunaga, Fuko
    Oba, Ema
    Ke, Ming-Ta
    Hsueh, Ya-Hsin
    Huang, Shao Ying
    Gomez-Tames, Jose
    Yu, Wenwei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (08): : 7047 - 7054
  • [28] Machine-Learning-Based Read Reference Voltage Estimation for NAND Flash Memory Systems Without Knowledge of Retention Time
    Choe, Hyemin
    Jee, Jeongju
    Lim, Seung-Chan
    Joe, Sung Min
    Park, Il Han
    Park, Hyuncheol
    IEEE ACCESS, 2020, 8 : 176416 - 176429
  • [29] Inferring Machine Learning Based Parameter Estimation for Telecom Churn Prediction
    Pamina, J.
    Raja, J. Beschi
    Peter, S. Sam
    Soundarya, S.
    Bama, S. Sathya
    Sruthi, M. S.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 257 - 267
  • [30] Machine-Learning-Based No Show Prediction in Outpatient Visits
    Elvira, C.
    Ochoa, A.
    Gonzalvez, J. C.
    Mochon, F.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2018, 4 (07): : 29 - 34