A Study on the Impact of Sentiment Analysis on Stock Market Prediction

被引:0
|
作者
Dhanasekaren K. [1 ]
Aluri S.T. [1 ]
Karthikeyan N. [1 ]
Baskaran S.H. [1 ]
Selvanambi R. [1 ]
机构
[1] School of Computer Science and Engineering, Vellore Institute of Technology, Vellore
关键词
machine learning; natural language processing; Sentiment analysis; social media sentiment; stock market; stock price prediction;
D O I
10.2174/2666255815666220315153545
中图分类号
学科分类号
摘要
Background: Investors estimate how a company's stock or financial instrument will perform in the future, which is known as the stock market prediction. Stock markets are one of the many industries that have benefited substantially from the incredible breakthroughs in machine learning. To effectively estimate these markets, many researchers and companies are continually researching and developing various state-of-the-art approaches and algorithms. Objective: The objective is to predict stock prices based on public sentiments. With a big collection of data from microblogging sites like Twitter, it is possible to analyse the thoughts or feelings of users on a wide scale. These sentiments play a major part in the way the stock market works. We review multiple papers and provide the advantages and disadvantages of various methods. Methods: An in-depth examination of the most recent methodologies for predicting stock market values using sentiment analysis is offered, as well as the multiple consequences for stock markets when epidemics or major events occur. Results: According to the findings, impact sentiment analysis has a significant part in predicting stock market price movement, allowing for greater profit. Conclusion: With modern machine learning and deep learning processes, we can forecast stock costs with a few degrees of precision. This research examines how stock expectations have changed over time, as well as the most recent and effective technique for forecasting, supplying, and minimizing speculators' losses. © 2023 Bentham Science Publishers.
引用
收藏
相关论文
共 50 条
  • [1] Sentiment Analysis of Financial News and its Impact on the Stock Market
    Patil, Aditya
    Sharma, Himaanshu
    Sinha, Aditya
    2024 2ND WORLD CONFERENCE ON COMMUNICATION & COMPUTING, WCONF 2024, 2024,
  • [2] Indian Stock Market Prediction Using Machine Learning and Sentiment Analysis
    Pathak, Ashish
    Shetty, Nisha P.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 595 - 603
  • [3] Deep Learning for Stock Market Prediction Using Sentiment and Technical Analysis
    Chatziloizos G.-M.
    Gunopulos D.
    Konstantinou K.
    SN Computer Science, 5 (5)
  • [4] BERT for Stock Market Sentiment Analysis
    de Sousa, Matheus Gomes
    Sakiyama, Kenzo
    Rodrigues, Lucas de Souza
    de Moraes, Pedro Henrique
    Fernandes, Eraldo Rezende
    Matsubara, Edson Takashi
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1597 - 1601
  • [5] GRUvader: Sentiment-Informed Stock Market Prediction
    Mamillapalli, Akhila
    Ogunleye, Bayode
    Inacio, Sonia Timoteo
    Shobayo, Olamilekan
    MATHEMATICS, 2024, 12 (23)
  • [6] Sentiment Analysis for Stock Price Prediction
    Gupta, Rubi
    Chen, Min
    THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2020), 2020, : 213 - 218
  • [7] Using Market News Sentiment Analysis for Stock Market Prediction
    Cristescu, Marian Pompiliu
    Nerisanu, Raluca Andreea
    Mara, Dumitru Alexandru
    Oprea, Simona-Vasilica
    MATHEMATICS, 2022, 10 (22)
  • [8] Stock Market Prediction Analysis by Incorporating Social and News Opinion and Sentiment
    Wang, Zhaoxia
    Ho, Seng-Beng
    Lin, Zhiping
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1375 - 1380
  • [9] CRITICAL REVIEW OF TEXT MINING AND SENTIMENT ANALYSIS FOR STOCK MARKET PREDICTION
    Jankova, Zuzana
    JOURNAL OF BUSINESS ECONOMICS AND MANAGEMENT, 2023, 24 (01) : 177 - 198
  • [10] Stock Market Prediction Using Microblogging Sentiment Analysis and Machine Learning
    Koukaras, Paraskevas
    Nousi, Christina
    Tjortjis, Christos
    TELECOM, 2022, 3 (02): : 358 - 378