Performance analysis of different machine learning algorithms in breast cancer predictions

被引:0
|
作者
Battineni G. [1 ]
Chintalapudi N. [1 ]
Amenta F. [1 ]
机构
[1] Telemedicine and Telepharmacy Center, School of Medicinal and Health Products Sciences, University of Camerino, Camerino
来源
Battineni, Gopi (gopi.battineni@unicam.it) | 1600年 / European Alliance for Innovation卷 / 06期
关键词
Accuracy; AUC; Feature selection; Machine learning; Tumor classification;
D O I
10.4108/eai.28-5-2020.166010
中图分类号
学科分类号
摘要
INTRODUCTION: There is a great percentage of failures in clinical trials of early detection of breast cancer. To do this, machine learning (ML) algorithms are useful to do diagnosis and prediction of cancer tumors with better accuracy. OBJECTIVE: In this study, we develop an ML model coupled with limited features to produce high classification accuracy in tumor classification. METHODS: We considered a dataset of 569 females diagnosed as 212 malignant and 357 benign types. For model development, three supervised ML algorithms namely support vector machines (SVM), logistic regression (LR), and K-nearest neighbors (KNN) were employed. Each model was further validated by 10-fold cross-validation and performance measures were defined to evaluate the model outcomes. RESULTS: Both SVM and LR models generated 97.66% accuracy with total feature evaluation. With selective features, the SVM accuracy was improved by 98.25%. Whereas the LR model including limited features produced 100% of true positive predictions. CONCLUSION: The proposed models involved by selective features could improve the prediction accuracy of a breast cancer diagnosis. © 2020 Gopi Battineni et al., licensed to EAI.
引用
收藏
页码:1 / 7
页数:6
相关论文
共 50 条
  • [1] Evaluating Diagnostic Performance of Machine Learning Algorithms on Breast Cancer
    Gatuha, George
    Jiang, Tao
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 258 - 266
  • [2] Prediction of breast cancer using machine learning algorithms on different datasets
    Yavuz, Omer Cagri
    Calp, M. Hanefi
    Erkengel, Hazel Ceren
    INGENIERIA SOLIDARIA, 2023, 19 (01):
  • [3] Comparative Analysis of Machine Learning Algorithms in Breast Cancer Classification
    Chaurasiya, Satish
    Rajak, Ranjit
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 131 (02) : 763 - 772
  • [4] Comparative Analysis of Machine Learning Algorithms in Breast Cancer Classification
    Satish Chaurasiya
    Ranjit Rajak
    Wireless Personal Communications, 2023, 131 : 763 - 772
  • [5] Performance Analysis of Machine Learning Algorithms for Cervical Cancer Detection
    Singh, Sanjay Kumar
    Goyal, Anjali
    INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2020, 15 (02) : 1 - 21
  • [6] COMPARISON OF MACHINE LEARNING ALGORITHMS FOR BREAST CANCER
    Suryachandra, Palli
    Reddy, P. Venkata Subba
    2016 INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT), VOL 3, 2015, : 439 - 444
  • [7] DIAGNOSING BREAST CANCER WITH MACHINE LEARNING ALGORITHMS
    Thiyagarajan, S.
    Chakravarthy, T.
    Arivoli, P., V
    INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2020, : 42 - 46
  • [8] Machine Learning Algorithms for Breast Cancer Prediction
    Kumar, K. M. E. Senthil
    Akalya, A.
    Kanimozhi, V.
    JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY, 2023, 30 (07): : E245 - E250
  • [9] Machine Learning Algorithms for Diagnosis of Breast Cancer
    Negi, Richaa
    Mathew, Rejo
    PROCEEDING OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS, BIG DATA AND IOT (ICCBI-2018), 2020, 31 : 928 - 932
  • [10] Comparison of the performance of machine learning algorithms in breast cancer screening and detection: A protocol
    Salod, Zakia
    Singh, Yashik
    JOURNAL OF PUBLIC HEALTH RESEARCH, 2019, 8 (03) : 112 - 118