Tuning the electronic and piezoelectric properties of Janus Ga2XY (X/Y=S, Se, Te) monolayers: A first-principles calculation

被引:2
作者
Yao, Shida [1 ]
Ma, Xinguo [1 ,2 ]
Huang, Chuyun [3 ]
Guo, Youyou [1 ]
Ren, Yijing [1 ]
Ma, Nan [4 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[2] Bengbu Glass Ind Design & Res Inst, State Key Lab Adv Technol Float Glass, Bengbu 233030, Peoples R China
[3] Wuchang Univ Technol, Coll Intelligent Construct, Wuhan 430223, Peoples R China
[4] Chinese Acad Sci, Key Lab Inorgan Funct Mat & Devices, Shanghai 201899, Peoples R China
基金
中国国家自然科学基金;
关键词
Janus materials; Piezoelectricity; First-principles; Strain; THERMOELECTRIC PROPERTIES;
D O I
10.1016/j.mssp.2024.108367
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The quest for novel materials exhibiting significant piezoelectricity remains imminent. Herein, the piezoelectricity of Janus Ga2XY (X/YS, Se, Te) monolayers has been investigated by DFT calculation. The results show that in-plane piezoelectric coefficients d(11) of Ga2SSe, Ga2STe, Ga2SeTe are 3.08, 4.76, 3.55 p.m./V, and out-of-plane piezoelectric coefficients d(31) are 0.14, 0.45, 0.33 pm/V. In addition, the vertical mirror asymmetry and different charge distributions lead to large piezoelectric properties of Ga2STe. Notably, strain can effectively regulate the piezoelectric properties of Janus Ga2XY monolayers. Under tensile strain, the piezoelectric stress coefficients (e(11)) of Ga2XY increase and the elastic stiffness coefficients (C-11+C-12, C-11-C-12) decrease, resulting in significant piezoelectric coefficients (d(11) and d(31)), which can be attributed to an increase in Born effective charge Z(xx)* and a decrease in the bond force. The results establish a theoretical foundation for the application of novel 2D Janus Ga2XY monolayers in piezoelectric devices.
引用
收藏
页数:9
相关论文
共 69 条
  • [1] Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides
    Alyoruk, M. Menderes
    Aierken, Yierpan
    Cakir, Deniz
    Peeters, Francois M.
    Sevik, Cem
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (40) : 23231 - 23237
  • [2] Large in-plane piezoelectricity of Janus Bi2X2Y (X = S, Se, te; Y = S, Se, te; X Y) monolayers with polyatomic thickness
    Bao, Jiading
    Qiu, Jian
    Liu, Xiaodong
    [J]. MATERIALS LETTERS, 2021, 296
  • [3] Strain induced valley degeneracy: a route to the enhancement of thermoelectric properties of monolayer WS2
    Bera, Jayanta
    Sahu, Satyajit
    [J]. RSC ADVANCES, 2019, 9 (43) : 25216 - 25224
  • [4] First-principles calculation of the piezoelectric tensor (d)over-left-right-arrow of III-V nitrides
    Bernardini, F
    Fiorentini, V
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (22) : 4145 - 4147
  • [5] Ferro-piezoelectricity in emerging Janus monolayer BMX2 (M = Ga, In and X = S, Se): ab initio investigations
    Bezzerga, Djamel
    Haidar, El-Abed
    Stampfl, Catherine
    Mir, Ali
    Sahnoun, Mohammed
    [J]. NANOSCALE ADVANCES, 2023, 5 (05): : 1425 - 1432
  • [6] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [7] Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials
    Blonsky, Michael N.
    Zhuang, Houlong L.
    Singh, Arunima K.
    Hennig, Richard G.
    [J]. ACS NANO, 2015, 9 (10) : 9885 - 9891
  • [8] Tunable optical and electronic properties of Janus monolayers Ga2SSe, Ga2STe, and Ga2SeTe as promising candidates for ultraviolet photodetectors applications
    Bui, Hoi D.
    Jappor, Hamad Rahman
    Hieu, Nguyen N.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2019, 125 : 1 - 7
  • [9] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [10] Structures, stabilities and piezoelectric properties of Janus gallium oxides and chalcogenides monolayers
    Cui, Yu
    Peng, Lei
    Sun, Liping
    Li, Mengyuan
    Zhang, Xiaoli
    Huang, Yucheng
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (08)