Polarization sensitive dual-band metasurface lens for x-band applications

被引:0
作者
Kumar P.V. [1 ]
Ghosh B. [1 ]
机构
[1] Indian Institute of Space Science and Technology, India
来源
Progress In Electromagnetics Research M | 2021年 / 103卷
关键词
34;
D O I
10.2528/PIERM21051605
中图分类号
学科分类号
摘要
This paper presents a dual-band polarization dependent phase gradient metasur-face (PGMS) lens based on phase compensation method. The proposed metasurface (MTS) consists of a multi-layered unitcell with elliptical structures encircled by a square loop. Owing to the elliptical shape, the unitcell produces an independent phase control for different polarizations of incident wave at two operating frequencies. The present work is aimed to design a dual-band gain enhancement MTS lens antenna in the broadside direction at 10 GHz and 12 GHz. The proposed MTS is designed by one-to-one spatial phase mapping with major and minor axes of the elliptical unitcell at 10 and 12 GHz for x-and y-polarized incident waves, respectively. The performance of the MTS is validated by placing two linearly polarized patch antennas operating at 10 GHz and 12 GHz at the focal distance. The simulation and measured results show a gain enhancement of 10 dB in the frequency range of [9.5–10.1] GHz and [11.6–12.1] GHz for x-and y-polarized waves, respectively. © 2021, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:141 / 149
页数:8
相关论文
共 34 条
[1]  
Chahat N., Decrossas E., Gonzalez-Ovejero D., Yurduseven O., Radway M. J., Hodges R. E., Estabrook P., Baker J. D., Bell D. J., Cwik T. A., Et al., Advanced cubesat antennas for deep space and earth science missions: A review, IEEE Antennas and Propagation Magazine, 61, 5, pp. 37-46, (2019)
[2]  
Hodges R. E., Chahat N., Hoppe D. J., Vacchione J. D., A deployable high-gain antenna bound for Mars: Developing a new folded-panel reflectarray for the first CubeSat mission to Mars, IEEE Antennas and Propagation Magazine, 59, 2, pp. 39-49, (2017)
[3]  
Babuscia A., Choi T., Sauder J., Chandra A., Thangavelautham J., Inflatable antenna for CubeSats: Development of the X-band prototype, 2016 IEEE Aerospace Conference, pp. 1-11, (2016)
[4]  
Hodges R. E., Hoppe D. J., Radway M. J., Chahat N. E., Novel deployable reflectarray antennas for CubeSat communications, 2015 IEEE MTT-S International Microwave Symposium, pp. 1-4, (2015)
[5]  
Sauder J. F., Arya M., Chahat N., Thiel E., Dunphy S., Shi M., Agnes G., Cwik T., Deployment mechanisms for high packing efficiency One-Meter Reflectarray Antenna (OMERA), AIAA Scitech 2019 Forum, (2019)
[6]  
Minatti G., Caminita F., Martini E., Sabbadini M., Maci S., Synthesis of modulated-metasurface antennas with amplitude, phase, and polarization control, IEEE Transactions on Antennas and Propagation, 64, 9, pp. 3907-3919, (2016)
[7]  
Patel A. M., Grbic A., Modeling and analysis of printed-circuit tensor impedance surfaces, IEEE Transactions on Antennas and Propagation, 61, 1, pp. 211-220, (2012)
[8]  
Szabo Z., Park G.-H., Hedge R., Li E.-P., A unique extraction of metamaterial parameters based on Kramers-Kronig relationship, IEEE Transactions on Microwave Theory and Techniques, 58, 10, pp. 2646-2653, (2010)
[9]  
Cai T., Wang G.-M., Zhang X.-F., Liang J.-G., Zhuang Y.-Q., Liu D., Xu H.-X., Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface, IEEE Transactions on Antennas and Propagation, 63, 12, pp. 5629-5636, (2015)
[10]  
Lee Y., Kim S.-J., Park H., Lee B., Metamaterials and metasurfaces for sensor applications, Sensors, 17, 8, (2017)