共 88 条
- [41] BUTLER K T, DAVIES D W, CARTWRIGHT H, Et al., Machine learning for molecular and materials science[J], Nature, 559, 7715, pp. 547-555, (2018)
- [42] BATRA R, SONG L, RAMPRASAD R., Emerging materials intelligence ecosystems propelled by machine learning[J], Nat Rev Mater, 6, 8, pp. 655-678, (2020)
- [43] BARToK A P, DE S, POELKING C, Et al., Machine learning unifies the modeling of materials and molecules, Sci Adv, 3, 12, (2017)
- [44] BARRETT T D, MALYSHEV A, LVOVSKY A I., Autoregressive neural-network wavefunctions for ab initio quantum chemistry[J], Nat Mach Intell, 4, 4, pp. 351-358, (2022)
- [45] DICK S, FERNANDEZ-SERRA M., Machine learning accurate exchange and correlation functionals of the electronic density, Nat Commun, 11, 1, (2020)
- [46] XU N, SHI Y, HE Y, Et al., A deep-learning potential for crystalline and amorphous Li–Si alloys, J Phys Chem C, 124, 30, pp. 16278-16288, (2020)
- [47] LU D, WANG H, CHEN M, Et al., 86 PFLOPS Deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy, Comput Phys Commun, 259, (2021)
- [48] WANG H, ZHANG L, HAN J, Et al., DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J], Comput Phys Commun, 228, pp. 178-184, (2018)
- [49] FU Z H, CHEN X, YAO N, Et al., The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>[J], J Energy Chem, 70, pp. 59-66, (2022)
- [50] HUANG J, ZHANG L, WANG H, Et al., Deep potential generation scheme and simulation protocol for the Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>-type superionic conductors, J Chem Phys, 154, 9, (2021)