Crystal structure, thermal properties and detonation characterization of bis­(5-amino-1,2,4-triazol-4-ium-3-yl)methane dichloride

被引:0
作者
Li H. [1 ]
Yan B. [1 ]
Ma H. [2 ]
Ma X. [1 ]
Sun Z. [3 ]
Ma Y. [1 ]
机构
[1] School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi
[2] School of Chemical Engineering, Northwest University, Xi'an, Shaanxi
[3] School of Energy Engineering, Yulin University, Yulin, Shaanxi
来源
Acta Crystallographica Section C: Structural Chemistry | 2020年 / 76卷
基金
中国国家自然科学基金;
关键词
Methane;
D O I
10.1107/s2053229620009924
中图分类号
学科分类号
摘要
Bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dichloride (BATZM·Cl 2 or C 5 H 10 N 8 2+ ·2Cl -) was synthesized and crystallized, and the crystal structure was characterized by single-crystal X-ray diffraction; it belongs to the space group C2/c (monoclinic) with Z = 4. The structure of BATZM·Cl 2 can be described as a V-shaped mol­ecule with reasonable chemical geometry and no disorder, and its one-dimensional structure can be described as a rhombic helix. The specific molar heat capacity (C p,m) of BATZM·Cl 2 was determined using the continuous C p mode of a microcalorimeter and theoretical calculations, and the C p,m value is 276.18 J K -1  mol -1 at 298.15 K. The relative deviations between the theoretical and experimental values of C p,m, H T - H 298.15K and S T - S 298.15K of BATZM·Cl 2 are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) of BATZM·Cl 2 were estimated using the nitro­gen equivalent equation according to the experimental density; BATZM·Cl 2 has a higher detonation velocity (7143.60 ± 3.66 m s -1) and detonation pressure (21.49 ± 0.03 GPa) than TNT. The above results for BATZM·Cl 2 are com­pared with those of bis­(5-amino-1,2,4-triazol-3-yl)methane (BATZM) and the effect of salt formation on them is discussed. ©
引用
收藏
页码:821 / 827
页数:6
相关论文
共 35 条
[1]  
Auckenthaler T., Blum V., Bungartz H. J., Huckle T., Johanni R., Kramer L., Lang B., Lederer H., Willems P. R., Parallel Comput, 37, pp. 783-794, (2011)
[2]  
Baker J., Kessi A., Delley B., J. Chem. Phys, 105, pp. 192-212, (1996)
[3]  
Bernstein J., Davis R. E., Shimoni L., Chang N. L., Angew. Chem. Int. Ed. Engl, 34, pp. 1555-1573, (1995)
[4]  
Bruker, APEX2, SAINT and SADABS, (2009)
[5]  
Cole A. G., Hutchens J. O., Stout J. W., J. Phys. Chem, 67, pp. 2245-2247, (1963)
[6]  
Delley B., J. Chem. Phys, 92, pp. 508-517, (1990)
[7]  
Delley B., J. Phys. Chem, 100, pp. 6107-6110, (1996)
[8]  
Delley B., J. Chem. Phys, 113, pp. 7756-7764, (2000)
[9]  
Dippold A. A., Feller M., Klapotke T. M., Cent. Eur. J. Energ. Mat, 8, pp. 261-278, (2011)
[10]  
Ditmars D. A., Ishihara S., Chang S.-S., Bernstein G., West E. D., J. Res. Natl Bur. Stand, 87, pp. 159-163, (1982)