Homeomorphic optimality conditions and duality for semi-infinite programming on smooth manifolds

被引:0
作者
TUNG L.T. [1 ]
TAM D.H. [1 ]
机构
[1] Department of Mathematics, College of Natural Sciences, Can Tho University, Can Tho
来源
Journal of Nonlinear Functional Analysis | 2021年 / 2021卷 / 01期
关键词
Karush-Kuhn-Tucker optimality conditions; Mond-Weir duality; Semi-infinite programming; Smooth manifolds; Wolfe duality;
D O I
10.23952/JNFA.2021.18
中图分类号
学科分类号
摘要
In this paper, we explore the semi-infinite programming on smooth manifolds. We first discuss the optimality conditions for semi-infinite programming on smooth manifolds via homeomorphic optimality conditions for the associated problems. Further, we present Lagrange, Mond-Weir, andWolfe type duality for the semi-infinite programming on manifolds, and examine weak and strong duality relations under the j-1-convexity assumption. © 2021 Journal of Nonlinear Functional Analysis.
引用
收藏
相关论文
共 38 条
  • [11] Goberna M.A., Kanzi N., Optimality conditions in convex multiobjective SIP, Math. Program, 164, pp. 67-191, (2017)
  • [12] Nishimori Y., Akaho S., Learning algorithms utilizing quasigeodesic flows on the Stiefel manifold, Neurocomputing, 67, pp. 106-135, (2005)
  • [13] Turaga P., Veeraraghavan A., Srivastava A., Chellappa R., Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition, IEEE Trans. Pattern Anal. Mach. Intell, 33, pp. 2273-2286, (2011)
  • [14] Treanta S., Mititelu S., Efficiency for variational control problems on Riemann manifolds with geodesic quasiinvex curvilinear integral functionals, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat, 114, (2020)
  • [15] Li C., Mordukhovich B.S., Wang J., Yao J.C., Weak sharp minima on Riemannian manifolds, SIAM J. Optim, 21, pp. 1523-1560, (2011)
  • [16] Yang W.H., Zhang L.H., Song R., Optimality conditions for the nonlinear programming problems on Riemannian manifolds, Pac. J. Optim, 10, pp. 415-434, (2014)
  • [17] Ruiz-Garzon G., Osuna-Gomez R., Ruiz-Zapatero J., Necessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifolds, Symmetry, 11, (2019)
  • [18] Bergmann R., Herzog R., Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds, SIAM J. Optim, 29, pp. 2423-2444, (2019)
  • [19] Chen S., The KKT optimality conditions for optimization problem with interval-valued objective function on Hadamard manifolds, Optimization
  • [20] Borwein J., Lewis A. S., Convex Analysis and Nonlinear Optimization: Theory and Examples, (2010)