Homeomorphic optimality conditions and duality for semi-infinite programming on smooth manifolds

被引:0
作者
TUNG L.T. [1 ]
TAM D.H. [1 ]
机构
[1] Department of Mathematics, College of Natural Sciences, Can Tho University, Can Tho
来源
Journal of Nonlinear Functional Analysis | 2021年 / 2021卷 / 01期
关键词
Karush-Kuhn-Tucker optimality conditions; Mond-Weir duality; Semi-infinite programming; Smooth manifolds; Wolfe duality;
D O I
10.23952/JNFA.2021.18
中图分类号
学科分类号
摘要
In this paper, we explore the semi-infinite programming on smooth manifolds. We first discuss the optimality conditions for semi-infinite programming on smooth manifolds via homeomorphic optimality conditions for the associated problems. Further, we present Lagrange, Mond-Weir, andWolfe type duality for the semi-infinite programming on manifolds, and examine weak and strong duality relations under the j-1-convexity assumption. © 2021 Journal of Nonlinear Functional Analysis.
引用
收藏
相关论文
共 38 条
  • [1] Chuong T.D., Kim D.S., Nonsmooth semi-infinite multiobjective optimization problems, J. Optim. Theory Appl, 160, pp. 748-762, (2014)
  • [2] Chuong T.D., Yao J.C., Isolated and proper efficiencies in semi-infinite vector optimization problems, J. Optim. Theory Appl, 162, pp. 447-462, (2014)
  • [3] Kanzi N., Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems, J. Glob. Optim, 56, pp. 417-430, (2013)
  • [4] Kanzi N., Nobakhtian S., Optimality conditions for nonsmooth semi-infinite multiobjective programming, Optim. Lett, 8, pp. 1517-1528, (2014)
  • [5] Tung L.T., Hung P.T., On generalized tw-contingent epiderivatives in parametric vector optimization problems, Appl. Set-Valued Anal. Optim, 2, pp. 123-137, (2020)
  • [6] Tung L.T., Karush-Kuhn-Tucker optimality conditions for nonsmooth multiobjective semidefinite and semiinfinite programming, J. Appl. Numer. Optim, 1, pp. 63-75, (2019)
  • [7] Tung L.T., Karush-Kuhn-Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions, J. Appl. Math. Comput, 62, pp. 67-91, (2020)
  • [8] Tung L.T., Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming via tangential subdifferentials, Numer. Funct. Anal. Optim, 41, pp. 659-684, (2020)
  • [9] Tung L.T., Karush-Kuhn-Tucker optimality conditions and duality for semi-infinite programming problems with vanishing constraints, J. Nonlinear Var. Anal, 4, pp. 319-336, (2020)
  • [10] Tung L.T., Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints, Ann. Oper. Res