Static output feedback control for continuous-time t-s fuzzy systems: An iterative linear matrix inequalities approach

被引:0
作者
Jeung E.T. [1 ]
机构
[1] Dept. of Robot, Control and Instrumentation Engineering, Changwon National University
来源
Journal of Institute of Control, Robotics and Systems | 2021年 / 27卷 / 11期
关键词
CCL; ILMI; Stabilization; Static output feedback; T-S fuzzy system;
D O I
10.5302/J.ICROS.2021.21.0114
中图分类号
学科分类号
摘要
This investigation deals with the design method of a static output feedback controller for continuous-time T-S fuzzy systems via iterative linear matrix inequalities. First, a matrix inequality that guarantees the stability of the nonlinear system is introduced. Based on this, an algorithm for finding the stabilization control gains, using the cone complementary linearization method, for continuous-time T-S fuzzy systems is presented. The validity of the proposed algorithm is verified through a simple example. © ICROS 2021.
引用
收藏
页码:913 / 918
页数:5
相关论文
共 20 条
  • [1] Syrmos V.L., Abdallah C.T., Dorato P., Grigoriadis K., Static output feedback-a survey, Automatica, 33, 2, pp. 125-137, (1997)
  • [2] Dorf R.C., Bishop R.H., Modern Control Systems, (2017)
  • [3] Ghaoui L.E., Oustry F., Aitrami M., A cone com- plementarity linearization algorithm for static output-feed-back and related problems, IEEE Trans. Automatic Control, 42, 8, (1997)
  • [4] Cao Y.-Y., Lam J., Sun Y.-X., Statice output feedback stabilization: An ILMI approach, Automatica, 34, 12, pp. 1641-1645, (1998)
  • [5] Sadabadi M.S., Reaucelle D., From static output feedback to strutured robust static output feedback: A survey, Annual Reviews in Control, 42, pp. 11-26, (2016)
  • [6] Gahinet P., Apkarian P., A linear matrix inequality approach to H<sub>∞</sub> control, International Journal of Robust Nonlinear Control, 4, pp. 421-448, (1994)
  • [7] Takagi T., Sugeno M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Systems, Man, Cybernetics, 15, 1, pp. 116-132, (1985)
  • [8] Wang H., Tanaka K., Griffin M., Parallel distributed compensation of nonlinear systems by Takagi and Sugeno’s fuzzy model, Proc. FUZZ-IEEE, pp. 531-538, (1995)
  • [9] Wang H.O., Tanaka K., Griffin M.F., An approach to fuzzy control of nonlinear systems: Stability and design issues, IEEE Trans. Fuzzy Systems, 4, 1, pp. 14-23, (1996)
  • [10] An J.H., Han T.J., Kim H.S., T-S fuzzy model-based fault tolerant tracking controller design of a quad-rotor: A fuzzy Lyapunov functional approach, Journal of Institute of Control, Robotics and Systems (In Korean), 27, 2, pp. 154-160, (2021)