共 21 条
[11]
Glaessgen E., Stargel D., The digital twin paradigm for future NASA, and U.S. air force vehicles, Structural Dynamics and Materials Conference, (2012)
[12]
Hinton G.E., Salakhutdinov R.R., Reducing the dimensionality of data with neural networks, Science, 313, 5786, pp. 504-507, (2006)
[13]
Hinton G.E., Krizhevsky A., Sutskever I., Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, 1, 5, pp. 1106-1114, (2012)
[14]
Jarosz K., Krok M., Nieslony P., Wielokryterialna Optymalizacja Programów Sterujących Na Obrabiarki CNC Poprzez Korektę Wartości Wybranych Parametrów Procesu Skrawania. Cz. I, STAL Metale and Nowe Technologie, 9, 10, pp. 70-74, (2019)
[15]
Jones D., Snider C., Nassehi A., Yon J., Hicks B., Characterising the digital twin: a systematic literature review, CIRP Journal of Manufacturing Science and Technology, 29, pp. 36-52, (2020)
[16]
Kim D.H., Kim T.J., Wang X., Kim M., Quan Y.J., Oh J.W., Ahn S.H., Smart machining process using machine learning: a review and perspective on machining industry, International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 4, pp. 555-568, (2018)
[17]
Nassehi A., Essink W., Barclay J., Evolutionary algorithms for generation and optimization of tool paths, CIRP Annals, 64, 1, pp. 455-458, (2015)
[18]
Negri E., Fumagalli L., Macchi M., A review of the roles of digital twin in CPS-based production systems, Procedia Manufacturing, 11, pp. 939-948, (2017)
[19]
Tao F., Qinglin Q., Wang L., Nee A.Y.C., Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: correlation and comparison, Engineering, 5, 4, pp. 653-661, (2019)
[20]
Vaishnav S., Agarwal A., Desai K.A., Machine learning-based instantaneous cutting force model for end milling operation, Journal of Intelligent Manufacturing, pp. 1-14, (2019)