Highly sensitive and homogeneous detection of unamplified RNA based on the light scattering properties of gold nanoparticle probes

被引:0
作者
Satoh H. [1 ]
Nakajima M. [1 ]
Hirano R. [2 ]
Nakaya Y. [1 ]
机构
[1] Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo
[2] Cellspect Co., Ltd., 1-10-82 Kitaiioka, Morioka, 020-0857, Iwate
来源
Biosensors and Bioelectronics: X | 2022年 / 12卷
基金
日本学术振兴会;
关键词
Hybridization; Nanoparticles; Nucleic acids; Optical analysis; Simple assay;
D O I
10.1016/j.biosx.2022.100249
中图分类号
学科分类号
摘要
RNA is a crucial diagnostic biomarker for several human diseases. Hence, a simple, rapid, sensitive, and cost-effective assay for detecting pathogen-derived RNAs (e.g., RNA viruses) in water is necessary for transcriptomic analysis. Here, we present a highly sensitive assay to detect unamplified RNA based on the light scattering properties of oligonucleotide-functionalized gold nanoparticle probes (Au-nanoprobes). In this assay, Au-nanoprobes recognize and hybridize to the target RNA. Subsequently, they scatter light when the sample solution is placed onto a quartz waveguide slide and is excited with an evanescent wave. This assay enables highly sensitive quantification (approximately 102 copies/μL) of bacterial 16S rRNA and mRNA without reverse transcription and cDNA amplification within 10 min of RNA extraction. Moreover, this assay was three orders of magnitude sensitive than previously reported assays for direct RNA quantification. © 2022 The Author(s)
引用
收藏
相关论文
共 21 条
[1]  
Cheng C., Wu J., Fikrig E., Wang P., Chen J., Eda S., Terry P., Unamplified RNA sensor for on-site screening of zika virus disease in a limited resource setting, Chemelectrochem, 4, pp. 485-489, (2017)
[2]  
Dhadwal H.S., Kemp P., Aller J., Dantzler M.M., Capillary waveguide nucleic acid based biosensor, Anal. Chim. Acta, 501, pp. 205-217, (2004)
[3]  
Elghanian R., Storhoff J.J., Mucic R.C., Letsinger R.L., Mirkin C.A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277, pp. 1078-1081, (1997)
[4]  
Hermansson A., Lindgren P.E., Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR, Appl. Environ. Microbiol., 67, pp. 972-976, (2001)
[5]  
Huertas C.S., Farina D., Lechuga L.M., Direct and label-free quantification of micro-RNA-181a at attomolar level in complex media using a nanophotonic biosensor, ACS Sens., 1, pp. 748-756, (2016)
[6]  
Li J., Wu D., Yu Y., Li T., Li K., Xiao M.M., Li Y., Zhang Z.Y., Zhang G.J., Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor, Biosens. Bioelectron., 183, (2021)
[7]  
Mollasalehi H., Shajari E., A colorimetric nano-biosensor for simultaneous detection of prevalent cancers using unamplified cell-free ribonucleic acid biomarkers, Bioorg. Chem., 107, (2021)
[8]  
Nakajima M., Hirano R., Okabe S., Satoh H., Simple assay for colorimetric quantification of unamplified bacterial 16S rRNA in activated sludge using gold nanoprobes, Chemosphere, 263, (2021)
[9]  
Ngo H.T., Freedman E., Odion R.A., Strobbia P., De Silva Indrasekara A.S., Vohra P., Taylor S.M., Vo-Dinh T., Direct detection of unamplified pathogen RNA in blood lysate using an integrated lab-in-a-stick device and ultrabright SERS nanorattles, Sci. Rep., 8, pp. 1-13, (2018)
[10]  
Satoh H., Kikuchi K., Katayose Y., Tsuda S., Hirano R., Hirakata Y., Kitajima M., Ishii S., Oshiki M., Hatamoto M., Takahashi M., Okabe S., Simple and reliable enumeration of Escherichia coli concentrations in wastewater samples by measuring β-d-glucuronidase (GUS) activities via a microplate reader, Sci. Total Environ., 715, (2020)