On the membership problem for finite automata over symmetric groups

被引:0
作者
Khashaev A.A. [1 ]
机构
[1] Lomonosov Moscow State University, Moscow
关键词
computational complexity; finite automata; groups; permutations;
D O I
10.1515/dma-2022-0033
中图分类号
学科分类号
摘要
We consider automata in which transitions are labelled with arbitrary permutations. The language of such an automaton consists of compositions of permutations for all possible admissible computation paths. The membership problem for finite automata over symmetric groups is the following decision problem: does a given permutation belong to the language of a given automaton? We show that this problem is NP-complete. We also propose an efficient algorithm for the case of strongly connected automata. © 2022 Walter de Gruyter GmbH, Berlin/Boston.
引用
收藏
页码:389 / 395
页数:6
相关论文
共 10 条
  • [1] Benois M., parties rationnelles du groupe libre, C. R. Acad. Sci. Paris, Ser. A, 269, pp. 1188-1190, (1969)
  • [2] Davey B.A., Priestley H.A., Introduction to Lattices and Order, (2002)
  • [3] Eder E., properties of substitutions and unifications, J. Symb. Comput., 1, 1, pp. 31-46, (1985)
  • [4] Eilenberg S., Automata, Languages, and Machines. Volume A, (1974)
  • [5] Furst M., Hopcroft J., Luks E., polynomial-time algorithms for permutation groups, 21st Annu. Symp. Found. Comput. Sci., IEEE Computer Soc., pp. 36-41, (1980)
  • [6] Grunschlag Z., Algorithms in Geometric Group Theory, (1999)
  • [7] Jerrum M., a compact representation for permutation groups, J. Algorithms, 7, 1, pp. 60-78, (1986)
  • [8] Kambites M., Silva P.V., Steinberg B., on the rational subset problem for groups, J. Algebra, 309, 2, pp. 622-639, (2007)
  • [9] Lohrey M., Groups St Andrews 2013, London Math. Soc. Lect. Note Ser., pp. 368-389, (2015)
  • [10] Sakarovitch J., Elements of Automata Theory, (2009)