共 50 条
The in-plane graphene and boropheneβ12 contacted sub-10 nm monolayer black phosphorous Schottky barrier field-effect transistors
被引:0
|作者:
Li, Wei
[1
]
Wei, Jinlei
[1
]
Chen, Wen
[1
]
Jing, Sicheng
[1
]
Pan, Jinghua
[1
]
Bian, Baoan
[1
]
Liao, Bin
[2
]
Wang, Guoliang
[3
]
机构:
[1] School of Science, Jiangnan University, Wuxi,214122, China
[2] College of Nuclear Science and Technology, Beijing Normal University, Beijing,100875, China
[3] Guangdong Guangxin Ion Beam Technology Co., Ltd, Guangzhou,510000, China
关键词:
Graphite electrodes - Phosphorus - Calculations - Quantum chemistry - Schottky barrier diodes - Monolayers - Graphene transistors - Field effect transistors;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Using ab initio quantum transport calculations, we investigate the performance of the in-plane (IP) graphene and boropheneβ12 contacted sub-10 nm (gate length = 5.1, 6.1, 7.3, 8.8 nm) single-gated (SG) and double-gated (DG) monolayer (ML) black phosphorous (BP) Schottky barrier field-effect transistors (SBFETs). The transfer characteristics, total gate capacitance, intrinsic delay time and dynamic power indicator are studied. The calculated on-state currents of the IP graphene contacted sub-10 nm SG ML BP SBFETs are 1064.8, 1272.3, 1676.5, 1363.8 μA/μm, which are far beyond the requirements of International Technology Roadmap for Semiconductor (ITRS) high performance (HP) application targets. Compared with graphene electrode, the on-state currents of IP boropheneβ12 contacted sub-10 nm SG ML BP SBFETs can only satisfy about 10%–70% requirement of HP standards because of the strong metal induced gap states (MIGS) in the channel. Moreover, we further investigated the effect of DG model on the device performance. The results indicated that the gate electrostatic control is significantly improved by using DG model. The on-state currents of IP graphene and boropheneβ12 contacted sub-10 nm DG ML BP SBFETs are increased by a factor of 1.37–1.56 and 1.16–3.59 compared with SG model. As a result, the large on-state currents of IP configurations based on graphene/ML BP/graphene can greatly stimulate the potential of BP transistors. © 2021 Elsevier Ltd
引用
收藏
相关论文