Coloring and Domination of Vertices in Triangle-free Graphs

被引:0
|
作者
Dutton, Ronald [1 ]
机构
[1] Department of Computer Science, University of Central Florida, Orlando,FL,32816, United States
来源
Journal of Combinatorial Mathematics and Combinatorial Computing | 2019年 / 111卷
关键词
Graph theory;
D O I
暂无
中图分类号
O144 [集合论]; O157 [组合数学(组合学)];
学科分类号
070104 ;
摘要
Any dominating set of vertices in a triangle-free graph can be used to specify a graph coloring with at most one color class more than the number of vertices in the dominating set. This bound is sharp for many graphs. Properties of graphs for which this bound is achieved are presented. © 2019 Charles Babbage Research Centre. All rights reserved.
引用
收藏
页码:137 / 143
相关论文
共 50 条
  • [21] Centrality of some cubic graphs on 16 vertices
    Jaentschi, Lorentz
    Diudea, Mircea V.
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2010, 87 (12) : 1531 - 1537
  • [22] Weak and strong domination in thorn graphs
    Durgun, Derya Dogan
    Lokcu, Berna
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (04)
  • [23] EFFICIENT EDGE DOMINATION PROBLEMS IN GRAPHS
    GRINSTEAD, DL
    SLATER, PJ
    SHERWANI, NA
    HOLMES, ND
    INFORMATION PROCESSING LETTERS, 1993, 48 (05) : 221 - 228
  • [24] Generalized weakly connected domination in graphs
    Peng, Mao
    Shen, Hao
    ARS COMBINATORIA, 2008, 89 : 345 - 353
  • [25] Porous Exponential Domination in Harary Graphs
    Ciftci, C.
    Aytac, A.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 231 - 237
  • [26] A Note on graphs with prescribed complete coloring numbers
    Chartrand, Gary
    Okamoto, Futaba
    Tuza, Zsolt
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 73 : 77 - 84
  • [27] Distance multi-labelling of graphs with weighted vertices
    Kim, Byeong Moon
    Rho, Yoomi
    Song, Byung Chul
    IET COMMUNICATIONS, 2017, 11 (16) : 2524 - 2530
  • [28] The Firefighter problem: Saving sets of vertices on cubic graphs
    Duffy, Christopher
    MacGillivray, Gary
    NETWORKS, 2019, 74 (01) : 62 - 69
  • [29] Coloring-flow duality of embedded graphs
    Devos, M
    Goddyn, L
    Mohar, B
    Vertigan, D
    Zhu, XD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) : 3993 - 4016
  • [30] Distributing vertices along a Hamiltonian cycle in Dirac graphs
    Sarkozy, Gabor N.
    Selkow, Stanley
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5757 - 5770