Effect of cobalt doping on electrochemical properties of sprayed nickel oxide thin films

被引:0
作者
Kate R.S. [1 ]
Deokate R.J. [1 ]
机构
[1] Vidya Pratishthan's Arts, Science and Commerce College, 13, Baramati-413, MS
来源
Deokate, R.J. (rjdeokate@gmail.com) | 1600年 / KeAi Communications Co.卷 / 03期
关键词
Cobalt doping; Cyclic voltammetry; Electrochemical supercapacitors; NiO; Spray pyrolysis;
D O I
10.1016/j.mset.2020.06.008
中图分类号
学科分类号
摘要
The nickel oxide (NiO) thin films are prepared with different level of cobalt (Co) doping (2–10 wt%) on conducting (FTO) by using spray pyrolysis technique. The effect of Co doping on the microstructure and electrochemical performance of NiO thin film electrodes are thoroughly investigated. The X-ray diffraction results exhibited the polycrystalline cubic NiO structure with (1 1 1) as preferential orientation. The XPS analysis revealed existence of Co in NiO thin films. The field emission scanning electron microscopy (FE-SEM) of 4% Co:NiO thin films presented porous surface morphology. The maximum specific capacitance 835F. g−1 is attained at scan rate of 5 mV s−1 from cyclic voltammetry in 2 M KOH electrolyte for 4% Co doped NiO thin film. Further, exhibited the maximum specific capacitance of 246.80F.g−1 at current density of 0.2 mA/cm2 with 96% capacity retention after 1000 cycle. © 2020
引用
收藏
页码:830 / 839
页数:9
相关论文
共 43 条
[1]  
Yang Y.-Y., Hu Z.-A., Zhang Z.-Y., Zhang F.-H., Zhang Y.-J., Liang P.-J., Zhang H.-Y., Wu H.-Y., Reduced graphene oxide–nickel oxide composites with high electrochemical capacitive performance, Mater. Chem. Phys., 133, 1, pp. 363-368, (2012)
[2]  
Niu Z., Dong H., Zhu B., Li J., Hng H.H., Zhou W., Chen X., Xie S., Highly Stretchable, Integrated Supercapacitors Based on Single-Walled Carbon Nanotube Films with Continuous Reticulate Architecture, Adv. Mater., 25, 7, pp. 1058-1064, (2013)
[3]  
Chen P.-C., Hsieh S.-J., Zou J., Chen C.-C., Selectively dealloyed Ti/TiO 2 network nanostructures for supercapacitor application, Mater. Lett., 133, pp. 175-178, (2014)
[4]  
Pushparaj V.L., Shaijumon M.M., Kumar A., Murugesan S., Ci L., Vajtai R., Linhardt R.J., Nalamasu O., Ajayan P.M., Flexible energy storage devices based on nanocomposite paper, PNAS, 104, pp. 13574-13577, (2007)
[5]  
Tiruye G.A., Torrero D.M., Palma J., Anderson M., Marcilla R., All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes, J. Power Sources, 279, pp. 472-480, (2015)
[6]  
Xiao K., Li J.-W., Chen G.-F., Liu Z.-Q., Li N., Su Y.-Z., Amorphous MnO<sub>2</sub> supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors, Electrochim. Acta, 149, pp. 341-348, (2014)
[7]  
Kou L., Liu Z., Huang T., Zheng B., Tian Z., Deng Z., Gao C., Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes, Nanoscale, 7, 9, pp. 4080-4087, (2015)
[8]  
Largeot C., Portet C., Chmiola J., Taberna P.-L., Gogotsi Y., Simon P., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, J. Am. Chem. Soc., 130, 9, pp. 2730-2731, (2008)
[9]  
Fan M., Ren B.O., Yu L., Liu Q.I., Wang J., Song D., Liu J., Jing X., Liu L., Facile growth of hollow porous NiO microspheres assembled from nanosheet building blocks and their high performance as a supercapacitor electrode, CrystEngComm, 16, 45, pp. 10389-10394, (2014)
[10]  
Conway B.E., Electrochemical Supercapacitors, (1999)