Mid-Infrared Supercontinuum Generation in a Varying Dispersion Waveguide for Multi-Species Gas Spectroscopy

被引:0
作者
Torre A.D. [1 ]
Armand R. [1 ]
Sinobad M. [2 ]
Fiaboe K.F. [1 ,3 ]
Luther-Davies B. [4 ]
Madden S. [4 ]
Mitchell A. [3 ]
Nguyen T.G. [3 ]
Moss D. [6 ]
Hartmann J.-M. [5 ]
Reboud V. [5 ]
Fedeli J.-M. [5 ]
Monat C. [1 ]
Grillet C. [1 ]
机构
[1] Université de Lyon, Institut des Nanotechnologies de Lyon, Umr Cnrs 5270, Ecully
[2] Deutsches Elektronen-Synchrotron, Hamburg
[3] Rmit University, School of Engineering Melbourne, Melbourne, 3001, VIC
[4] The Australian National University, Quantum Science and Technology, Canberra, 2600, ACT
[5] Université Grenoble Alpes, CEA-Leti, Grenoble
[6] Swinburne University of Technology, Optical Sciences Centre, Hawthorn, 3122, VIC
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Mid-infrared; nonlinear optics; spectroscopy; supercontinuum;
D O I
10.1109/JSTQE.2022.3185169
中图分类号
学科分类号
摘要
We report the experimental generation of a broadband and flat mid-infrared supercontinuum in a silicon-germanium-on-silicon two-stage waveguide. Our particular design combines a short and narrow waveguide section for efficient supercontinuum generation, and an inverse tapered section that promotes the generation of two spectrally shifted dispersive waves along the propagation direction, leading to an overall broader and flatter supercontinuum. The experimentally generated supercontinuum extended from 2.4 to 5.5 μm, only limited by the long wavelength detection limit of our spectrum analyzer. Numerical simulations predict that the supercontinuum actually extends to 7.8 μm. We exploit the enhanced flatness of our supercontinuum for a proof-of-principle demonstration of free-space multi-species gas spectroscopy of water vapor and carbon dioxide. © 1995-2012 IEEE.
引用
收藏
相关论文
共 42 条
  • [31] Lu F., Knox W.H., Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers, Opt. Exp., 12, 2, pp. 347-353, (2004)
  • [32] Lu F., Deng Y., Knox W.H., Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers, Opt. Lett., 30, 12, pp. 1566-1568, (2005)
  • [33] Teipel J., Turke D., Giessen H., Zintl A., Braun B., Compact multiwatt picosecond coherent white light sources using multiple-taper fibers, Opt. Exp., 13, 5, pp. 1734-1742, (2005)
  • [34] Humbert G., Et al., Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre, Opt. Exp., 14, 4, pp. 1596-1603, (2006)
  • [35] Kudlinski A., Et al., Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation, Opt. Exp., 14, 12, pp. 5715-5722, (2006)
  • [36] Chen Z., Taylor A.J., Efimov A., Coherent mid-infrared broadband generation in non-uniform ZBLAN fiber taper, Opt. Exp., 17, 7, pp. 5852-5860, (2009)
  • [37] Singh N., Et al., Supercontinuum generation in varying-dispersion and birefringent silicon waveguide, Opt. Exp., 27, 22, pp. 31698-31712, (2019)
  • [38] Wei J., Et al., Supercontinuum generation assisted by wave trapping in dispersion-managed integrated silicon waveguides, Phys. Rev. Appl., 14, 5, (2020)
  • [39] Leuthold J., Koos C., Freude W., Nonlinear silicon photonics, Nature Photon., 4, 8, pp. 535-544, (2010)
  • [40] Karim M.R., Al Kayed N., Jahan N., Alam M.S., Rahman B.M.A., Study of highly coherent mid-infrared supercontinuum generation in CMOS compatible Si-rich SiN tapered waveguide, J. Lightw. Technol., 8724, pp. 1-12, (2022)