Rapid pressure-assisted sinter bonding in air using 200 nm Cu particles and enhancement of bonding strength by successive pressureless annealing

被引:1
作者
KIM M.I. [1 ]
LEE J.-H. [1 ]
机构
[1] Department of Materials Science and Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Seoul, Nowon-gu
来源
Transactions of Nonferrous Metals Society of China (English Edition) | 2022年 / 32卷 / 02期
关键词
Cu paste; malic acid; shear strength; sinter bonding; submicron Cu particles; successive annealing;
D O I
10.1016/S1003-6326(22)65821-7
中图分类号
学科分类号
摘要
To design an effective and realistically applicable sinter bonding process for power devices, we proposed a two-step process using a 200 nm Cu-particle-based paste to form a bondline having high-temperature sustainability and superior thermal conductance. This process involved rapid pressure-assisted sinter bonding in air followed by pressureless annealing in a nitrogen atmosphere. In the case of a paste prepared with a mixture of 20 wt.% malic acid and 80 wt.% ethylene glycol, sinter bonding at 300 °C and 5 MPa for only 30 s resulted in a sufficient shear strength of 23.1 MPa. The shear strength was significantly enhanced to 69.6 MPa by the additional pressureless aging for 30 min. Therefore, the two-step sinter bonding process is expected to provide an outstanding production rate as a next-generation sinter bonding process. © 2022 The Nonferrous Metals Society of China
引用
收藏
页码:629 / 638
页数:9
相关论文
共 19 条
  • [1] HONG W.S., KIM M.S., HONG K.K., Electrical and microstructural reliability of pressureless silver-sintered joints on silicon carbide power modules under thermal cycling and high-temperature storage [J], Journal of Electronic Materials, 50, pp. 914-925, (2021)
  • [2] LEE Y.J., LEE J.H., Die sinter bonding in air using copper formate preform for formation of full-density bondline [J], Transactions of Nonferrous Metals Society of China, 31, pp. 1717-1728, (2021)
  • [3] WANG M.Y., MEI Y.H., LI X., BURGOS R., BOROYEVICH D., LU G.Q., How to determine surface roughness of copper substrate for robust pressureless sintered silver in air [J], Materials Letters, 228, pp. 327-330, (2018)
  • [4] PENG Y., MOU Y., LIU J.X., CHEN M.X., Fabrication of high-strength Cu–Cu joint by low-temperature sintering micron-nano Cu composite paste [J], Journal of Materials Science: Materials in Electronics, 31, pp. 8456-8463, (2020)
  • [5] CHEN W.C., CHENG J.G., CHEN H.P., YE N.M., WEI B.Z., LUO L.M., WU Y.C., Nanosized copper powders prepared by gel-casting method and their application in lubricating oil [J], Transactions of Nonferrous Metals Society of China, 28, pp. 1186-1191, (2018)
  • [6] ZUO Y., CARTER-SEARJEANT S., GREEN M., MILLS L., MANNAN S.H., High bond strength Cu joints fabricated by rapid and pressureless in situ reduction-sintering of Cu nanoparticles [J], Materials Letters, 276, (2020)
  • [7] ISHIZAKI T., WATANABE R., A new one-pot method for the synthesis of Cu nanoparticles for low temperature bonding [J], Journal of Materials Chemistry, 22, pp. 25198-25206, (2012)
  • [8] LIU J.D., CHEN H.T., JI H.J., LI M.Y., Highly conductive Cu–Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles [J], ACS Applied Materials & Interfaces, 8, pp. 33289-33298, (2016)
  • [9] GAO Y., ZHANG H., LI W.L., JIU J.T., NAGAO S., SUGAHARA T., SUGANUM A.K., Die bonding performance using bimodal Cu particle paste under different sintering atmospheres [J], Journal of Electronic Materials, 46, pp. 4575-4581, (2017)
  • [10] MOU Y., LIU J.X., CHENG H., PENG Y., CHEN M.X., Facile preparation of self-reducible Cu nanoparticle paste for low temperature Cu—Cu bonding [J], JOM, 71, pp. 3076-3083, (2019)