Effectiveness of data-driven wind turbine wake models developed by machine/deep learning with spatial-segmentation technique

被引:0
作者
Wang, Longyan [1 ,2 ]
Xie, Junhang [1 ]
Luo, Wei [1 ]
Wang, Zilu [1 ]
Zhang, Bowen [1 ]
Chen, Meng [1 ]
Tan, Andy C.C. [3 ]
机构
[1] Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Jiangsu Province, Zhenjiang,212013, China
[2] School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane City,QLD,4001, Australia
[3] LKC Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, Kajang,Selangor,43000, Malaysia
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Convolutional neural networks - Errors - Flow fields - Forecasting - Learning algorithms - Turbulence - Velocity - Wakes - Wind turbines
引用
收藏
相关论文
empty
未找到相关数据