Sewage sludge treatment via hydrothermal carbonization combined with supercritical water gasification: Fuel production and pollution degradation

被引:21
作者
Feng H. [1 ]
Cui J. [1 ]
Xu Z. [1 ]
Hantoko D. [1 ,2 ]
Zhong L. [3 ]
Xu D. [4 ]
Yan M. [1 ,5 ]
机构
[1] Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou
[2] Interdiscipilinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran
[3] Beijing Huaneng Yangtze Environmental Technology Research Institute Co.,Ltd, Beijing
[4] Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Shaanxi Province, Xi'an
[5] Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou
基金
中国国家自然科学基金;
关键词
Hydrogen; Hydrothermal carbonization; Sewage sludge; Sulfur; Supercritical water gasification;
D O I
10.1016/j.renene.2023.04.071
中图分类号
学科分类号
摘要
Aqueous phase byproduct from hydrothermal carbonization of sludge (named AHT) has high COD and TOC, supercritical water gasification (SCWG)can efficiently convert AHT into rich-H2 syngas. This study investigated the effect of temperature on syngas production, elements distribution and pollutants decomposition during the HTC of sewage sludge and SCWG of AHT. Compared to traditional directly SCWG of sludge, the combined method could produce syngas with higher H2 proportion and lower gaseous sulfur concentration. The maximum H2 proportion and carbon conversion efficiency (CE) in syngas could reach 59% and 30.40%. Meanwhile, higher SCWG temperature can reduce the sulfur concentration of syngas. SCWG effectively reduce the COD and TOC in AHT. With HTC and SCWG temperature increased, the concentration of total nitrogen (TN) gradually decreased but NH4+ ions concentration (NH4+-N) increased in aqueous phase product. © 2023 Elsevier Ltd
引用
收藏
页码:822 / 831
页数:9
相关论文
共 47 条
  • [1] China Urban-Rural Construction Statistical Yearbook 2020, (2020)
  • [2] Liu Y., Lin R., Man Y., Ren J., Recent developments of hydrogen production from sewage sludge by biological and thermochemical process, Int. J. Hydrogen Energy, 44, 36, pp. 19676-19697, (2019)
  • [3] Yu B., Xiao X., Wang J., Hong M., Deng C., Li Y.-Y., Liu J., Enhancing phosphorus recovery from sewage sludge using anaerobic-based processes: current status and perspectives, Bioresour. Technol., 341, (2021)
  • [4] Sliusar N., Filkin T., Huber-Humer M., Ritzkowski M., Drone technology in municipal solid waste management and landfilling: a comprehensive review, Waste Manag., 139, pp. 1-16, (2022)
  • [5] Liang Y., Xu D., Feng P., Hao B., Guo Y., Wang S., Municipal sewage sludge incineration and its air pollution control, J. Clean. Prod., 295, (2021)
  • [6] Sillero L., Solera R., Perez M., Anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure for bio-hydrogen production, Int. J. Hydrogen Energy, (2021)
  • [7] Weijin G., Zizheng Z., Yue L., Qingyu W., Lina G., Hydrogen production and phosphorus recovery via supercritical water gasification of sewage sludge in a batch reactor, Waste Manag., 96, pp. 198-205, (2019)
  • [8] Hoang S.A., Bolan N., Madhubashani A.M.P., Vithanage M., Perera V., Wijesekara H., Wang H., Srivastava P., Kirkham M.B., Mickan B.S., Rinklebe J., Siddique K.H.M., Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: a review, Environ. Pollut., 293, (2022)
  • [9] Tasca A.L., Puccini M., Gori R., Corsi I., Galletti A.M.R., Vitolo S., Hydrothermal carbonization of sewage sludge: a critical analysis of process severity, hydrochar properties and environmental implications, Waste Manag., 93, pp. 1-13, (2019)
  • [10] Xu Z.-X., Shan Y.-Q., Zhang Z., Deng X.-Q., Yang Y., Luque R., Duan P.-G., Hydrothermal carbonization of sewage sludge: effect of inorganic salts on hydrochar's physicochemical properties, Green Chem., 22, 20, pp. 7010-7022, (2020)