Electron acceleration by higher-order cosh-gaussian laser pulses in vacuum

被引:8
作者
Ghotra H.S. [1 ,2 ]
机构
[1] Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, G. T. Road, Punjab, Phagwara
[2] Central Instrumentation Facility (CIF), Research and Development Cell, Lovely Professional University, G. T. Road, Punjab, Phagwara
来源
Optik | 2023年 / 286卷
关键词
Cosh-Gaussian Laser; Decentered parameter; Direct Laser Acceleration; Electron acceleration; Radially polarized laser; SDG Energy;
D O I
10.1016/j.ijleo.2023.170992
中图分类号
学科分类号
摘要
Higher-order Cosh-Gaussian (ch-G) laser pulse is proposed for effective electron acceleration and energy gain in vacuum. The intensity distribution of ch-G laser is influenced by its higher-order (m) and decentered parameter (b) controlled propagation features. The laser pulse order m= (0,1,2,3) classifies them as Gaussian, ch-G, ch-square-G, and ch-cube-G laser pulses. The flatter the beam profile becomes as the order (m) increases, with the loss of its initial maximum intensity center at a slower rate as m increases, making it suitable for long-distance propagation. The increase in decentered parameter b, changes its properties from Gaussian(b=0) to flat top (b>1) and ring-shaped (b∼2) forms. As a result, it operates well enough to quickly accelerate electrons to exceedingly high energies in a short period of time. The analytic results show that altering the m and b combination leads to a significant rise in electron energy with laser intensity (∼1020W/cm2) of the order of GeV in vacuum. © 2023 Elsevier GmbH
引用
收藏
相关论文
共 33 条
  • [1] Gonsalves A.J., Nakamura K., Daniels J., Benedetti C., Pieronek C., de Raadt T.C.H., Steinke S., Bin J.H., Bulanov S.S., van Tilborg J., Geddes C.G.R., Schroeder C.B., Cs Toth E., Esarey K., Swanson L., Fan-Chiang G., Bagdasarov N., Bobrova V., Gasilov G., Korn P., Sasorov, Leemans W.P., Petawatt laser Guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide, Phys. Rev. Lett., 122, (2019)
  • [2] Gales S., Tanaka K.A., Balabanski D.L., Negoita F., Stutman D., Tesileanu O., Ur C.A., Ursescu D., Andrei I., Ataman S., Cernaianu M.O., D'Alessi L., Dancus I., Diaconescu B., Djourelov N., Filipescu D., Ghenuche P., Ghita D.G., Matei C., Seto K., Zeng M., Zamfir N.V., The extreme light infrastructure—nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams, Rep. Prog. Phys., 81, (2018)
  • [3] Malka V., Faure J., Gauduel Y.A., Lefebvre E., Rousse A., Phuoc K.T., Principles and applications of compact laser plasma accelerators, Nat. Phys., 4, pp. 447-453, (2008)
  • [4] Wang X., Zgadzaj R., Fazel N., Li Z., Yi S.A., Zhang X., Henderson W., Chang Y.-Y., Korzekwa R., Tsai H.-E., Pai C.H., Quevedo H., Dyer G., Gaul E., Martinez M., Bernstein A.C., Borger T., Spinks M., Donovan M., Khudik V., Shvets G., Ditmire T., Downer M.C., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun., 4, 1988, (2013)
  • [5] Stupakov G.V., Zolotorev M.S., Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches, Phys. Rev. Lett., 86, (2001)
  • [6] Ghotra H.S., Kant N., Polarization effect of a Gaussian laser pulse on magnetic field influenced electron acceleration in vacuum, Opt. Commun., 365, pp. 231-236, (2016)
  • [7] Hartemann F.V., Meter J.R.V., Troha A.L., Landahl E.C., Luhmann N.C., Baldis H.A., Gupta A., Kerman A.K., Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus, Phys. Rev. E, 58, (1998)
  • [8] Jain A., Gupta D.N., Improvement of electron beam quality in laser wakefield acceleration by a circularly-polarized laser pulse, Plasma Phys. Control. Fusion, 63, 7, (2021)
  • [9] Gupta D.N., Yadav M., Jain A., Kumar S., Electron bunch charge enhancement in laser wakefield acceleration using a flattened Gaussian laser pulse, Phys. Lett. A, 414, (2021)
  • [10] Ghotra H.S., Kant N., GeV electron acceleration by a Gaussian field laser with effect of beam width parameter in magnetized plasma, Opt. Commun., 383, pp. 169-176, (2017)