共 34 条
- [1] HUANG X, ZHOU S., Adaptive transmission for edge learning via training loss estimation, Proceedings of IEEE International Conference on Communications, pp. 1-6, (2020)
- [2] CHIANG M, ZHANG T., Fog and IoT: an overview of research opportunities, IEEE Internet of Things Journal, 3, 6, pp. 854-864, (2016)
- [3] HEINTZ B, CHANDRA A, SITARAMAN R K., Optimizing grouped aggregation in geo-distributed streaming analytics[C], Proceedings of International Symposium on High-Performance Parallel and Distributed Computing, pp. 133-144, (2015)
- [4] SHI W, CAO J, ZHANG Q, Et al., Edge computing: vision and challenges, IEEE Internet of Things Journal, 3, 5, pp. 637-646, (2016)
- [5] ZHOU Z, CHEN X, LI E, Et al., Edge intelligence: Paving the last mile of artificial intelligence with edge computing, Proceedings of the IEEE, 107, 8, pp. 1738-1762, (2019)
- [6] PARK J, SAMARAKOON S, BENNIS M, Et al., Wireless network intelligence at the edge, Proceedings of the IEEE, 107, 11, pp. 2204-2239, (2019)
- [7] LIU D, ZHU G, ZHANG J, Et al., Exploiting diversity via importance-aware user scheduling for fast edge learning, Proceedings of IEEE International Conference on Communications Workshops, pp. 1-6, (2020)
- [8] ZENG Z, LIU Y, TANG W, Et al., Noise is useful: exploiting data diversity for edge intelligence, IEEE Wireless Communications Letters, 10, 5, pp. 957-961, (2021)
- [9] LIM W Y, LUONG N C, HOANG D T, Et al., Federated learning in mobile edge networks: a comprehensive survey, IEEE Communications Surveys and Tutorials, 22, 3, pp. 2031-2063, (2020)
- [10] KONECNY J, MCMAHAN H B, YU F X, Et al., Federated learning: strategies for improving communication efficiency, (2016)