N-doped three-dimensional needle-like CoS2 bridge connection Co3O4 core–shell structure as high-efficiency room temperature NO2 gas sensor

被引:51
作者
Bai X. [1 ]
Liu Z. [1 ]
Lv H. [1 ]
Chen J. [1 ]
Khan M. [1 ]
Wang J. [1 ,2 ]
Sun B. [1 ]
Zhang Y. [1 ]
Kan K. [2 ]
Shi K. [1 ]
机构
[1] Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin
[2] Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin
来源
Journal of Hazardous Materials | 2022年 / 423卷
基金
中国国家自然科学基金;
关键词
Bridge connection core–shell structure; High sensitivity; N-doped; P-p heterojunction; Room-temperature NO[!sub]2[!/sub] sensors;
D O I
10.1016/j.jhazmat.2021.127120
中图分类号
学科分类号
摘要
The N-doped three-dimensional (3D) needle bridge connection core-shell structure N-CoS2@Co3O4 synthesized in this work was prepared by simple hydrothermal and high-temperature vulcanization methods. The optimized N-CoS2@Co3O4-2 composite response to NO2 is 62.3–100 ppm, a response time of 1.3 s, the recovery time of 17.98 s, the detection limit of 5 ppb and stability of as long as 10 weeks at room temperature (RT). Its excellent NO2 sensing performance is attributed to the unique porous and bridge connection core-shell structure of the N-CoS2@Co3O4-2 with high specific surface area, interconnected internal channels, abundant exposed S edge active sites, and high catalytic performance promoted by N-doping. This simple manufacturing method of high-performance sensing materials paves the way for the design of N-doped bridge connection core–shell structures. © 2021 Elsevier B.V.
引用
收藏
相关论文
共 42 条
[1]  
Li D., Ji S.Y., Guo Y.Q., Sang N., Ambient NO<sub>2</sub> exposure sex-specifically impairs myelin and contributes to anxiety and depression-like behaviors of C57BL/6J mice, J. Hazard. Mater., 416, (2021)
[2]  
Han C.H., Li X.W., Liu Y., Li X.H., Shao C.L., Ri J.S., Ma J.G., Liu Y.C., Construction of In<sub>2</sub>O<sub>3</sub>/ZnO yolk-shell nanofibers for room-temperature NO<sub>2</sub> detection under UV illumination, J. Hazard. Mater., 403, (2021)
[3]  
Liu J.J., Zhang L.Y., Cheng B., Fan J.J., Yu J.G., A high-response formaldehyde sensor based on fibrous Ag-ZnO/In<sub>2</sub>O<sub>3</sub> with multi-level heterojunctions, J. Hazard. Mater., 413, (2021)
[4]  
Wang J., Li D.Q., Ye Y.X., Qiu Y., Liu J.W., Huang L., Liang B., Chen B.L., A fluorescent metal-organic framework for food real-time visual monitoring, Adv. Mater., 33, (2021)
[5]  
Arturo G., Sun C., Mariano A.L., Estefania F.B., Elena G.S., Bess V., Javier C.G., Carlos M.G., Roberta P., Reinhold W., Juan C.G., Jose S.C., Divergent adsorption-dependent luminescence of amino-functionalized lanthanide metal-organic frameworks for highly sensitive NO<sub>2</sub> sensors, J. Phys. Chem. Lett., 11, pp. 3362-3368, (2020)
[6]  
Choi P.G., Fuchigami T., Kakimoto K.I., Masuda Y., Effect of crystal defect on gas sensing properties of Co<sub>3</sub>O<sub>4</sub> nanoparticles., ACS Sensors, 5, pp. 1665-1673, (2020)
[7]  
Kumar M., Bhatt V., Yun J.H., Hierarchical 3D micro flower-like Co<sub>3</sub>O<sub>4</sub> structures for NO<sub>2</sub> detection at room temperature, Phys. Lett. A, 384, (2020)
[8]  
Hsueh T.J., Wu S.S., Highly sensitive Co<sub>3</sub>O<sub>4</sub> nanoparticles/MEMS NO<sub>2</sub> gas sensor with the adsorption of the Au nanoparticles, Sens. Actuators B: Chem., 329, (2020)
[9]  
Zhao Z., Qin F., Kasiraju S., Vertically aligned MoS<sub>2</sub>/Mo<sub>2</sub>C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution, ACS Catal., 7, pp. 7312-7318, (2017)
[10]  
Mariyappan V., Manavalan S., Chen S.M., Jaysiva G., Veerakumar P., Keerthi M., Sr@FeNi-S nanoparticle/carbon nanotube nanocomposite with superior electrocatalytic activity for electrochemical detection of toxic mercury(II), ACS Appl. Electron. Mater., 2, pp. 1943-1952, (2020)