Effect of TiO2 on Thermal Shock Resistance and Slag Penetration Resistance of Magnesia

被引:0
|
作者
Li Z. [1 ]
Xu Y. [1 ]
Wang Q. [1 ]
Zhu T. [1 ]
Dai Y. [1 ]
Zhou F. [2 ]
Xu C. [2 ]
机构
[1] The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan
[2] Wugang Refractory Co. Ltd., Wuhan
来源
Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society | 2023年 / 51卷 / 03期
关键词
free calcium oxide; hydration resistance; magnesium oxide; slag penetration resistance; thermal shock resistance; titanium oxide;
D O I
10.14062/j.issn.0454-5648.20220867
中图分类号
学科分类号
摘要
To improve the resistance to hydration, thermal shock and slag penetration of magnesia, a magnesia based composite was prepared via adding TiO2 powder (i.e., 1% (in mass fraction), 2% and 3%) into a light burned magnesia powder. The effect of TiO2 content on the sintering behavior, microstructure and properties of the composite was investigated. The results show that free CaO and some MgO transform into CaTiO3 and Mg2TiO4 and the size of MgO grains increases as TiO2 addition increases, leading to an improvement in the hydration resistance. The formed CaTiO3 and Mg2TiO4 phases reduce the thermal expansion coefficient and induce the crack deflection as TiO2 content increases, therefore improving the thermal shock resistance of the specimens. Besides, as 1% TiO2 is added, the slag penetration resistance of the specimens is enhanced due to the increase in MgO grain size and the formation of high stable intergranular CaTiO3 phase. However, the further increasing TiO2 content reduces the slag penetration resistance due to the formation of low stable Mg2TiO4 phase at MgO grain boundaries. © 2023 Chinese Ceramic Society. All rights reserved.
引用
收藏
页码:602 / 609
页数:7
相关论文
共 31 条
  • [11] HU Z, XU Y B, LI Y W, Et al., Role of ZrO<sub>2</sub> in sintering and mechanical properties of CaO containing magnesia from cryptocrystalline magnesite[J], Ceram Int, 48, 5, pp. 6236-6244, (2022)
  • [12] GU Q, LIU G Q, LI H X, Et al., Synthesis of MgO–MgAl<sub>2</sub>O<sub>4</sub> refractory aggregates for application in MgO–C slide plate, Ceram Int, 45, 18, pp. 24768-24776, (2019)
  • [13] MI Yao, XU Yibiao, LI Yawei, Et al., J Chin Ceram Soc, 49, 12, pp. 2760-2766, (2021)
  • [14] ZHAO J L, HAO X, WANG S Y, Et al., Sintering behavior and thermal shock resistance of aluminum titanate (Al<sub>2</sub>TiO<sub>5</sub>)-toughened MgO-based ceramics[J], Ceram Int, 47, pp. 26643-26650, (2021)
  • [15] ZHANG S, SARPOOLAKY H, MARRIOTT N J, Et al., Penetration and corrosion of magnesia grain by silicate slags[J], Br Ceram Trans, 99, 6, pp. 248-255, (2000)
  • [16] MUKAI K, TAO Z, GOTO K, Et al., In-situ observation of slag penetration into MgO refractory[J], Scand J Metall, 31, 1, pp. 68-78, (2002)
  • [17] ZHANG W X, HUANG A, ZOU Y S, Et al., Corrosion modeling of magnesia aggregates in contact with CaO–MgO–SiO<sub>2</sub> slags[J], J Am Ceram Soc, 103, 3, pp. 2128-2136, (2020)
  • [18] LEE Y B, Park H C, OH K D, Et al., Sintering and microstructure development in the system MgO–TiO<sub>2</sub>[J], J Mater Sci, 33, 17, pp. 4321-4325, (1998)
  • [19] LIAO N, Jia D C, Yang Z H, Et al., Mechanical properties and thermal shock resistance of Si<sub>2</sub>BC<sub>3</sub>N ceramics with ternary Al<sub>4</sub>SiC<sub>4</sub> additive[J], Ceram Int, 44, 8, pp. 9009-9017, (2018)
  • [20] XU T T, SU Y, SHI T, Et al., Improving hydration resistance of MgO–CaO ceramics by in situ synthesized CaZrO<sub>3</sub> coatings prepared using a non-hydrolytic sol[J], Ceram Int, 47, 2, pp. 2165-2171, (2021)