Combining machine learning and human experts to predict match outcomes in football: A baseline model

被引:0
|
作者
Beal, Ryan [1 ]
Middleton, Stuart E. [1 ]
Norman, Timothy J. [1 ]
Ramchurn, Sarvapali D. [1 ]
机构
[1] School of Electronics and Computer Science, University of Southampton, Southampton,SO17 1BJ, United Kingdom
来源
arXiv | 2020年
关键词
Baseline models - Benchmark datasets - Human expert - Machine learning models - New applications - Prediction accuracy - Time-periods;
D O I
暂无
中图分类号
学科分类号
摘要
10
引用
收藏
相关论文
共 50 条
  • [41] Automatic Recognition of Human Activities Combining Model-based AI and Machine Learning
    Patsch, Constantin
    Zakour, Marsil
    Chaudhari, Rahul
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3, 2022, : 15 - 22
  • [42] Combining human input with machine learning: A case study
    Upshall, Michael
    LEARNED PUBLISHING, 2018, 31 (02) : 157 - 160
  • [43] Understanding gender differences in professional European football through machine learning interpretability and match actions data
    Marc Garnica-Caparrós
    Daniel Memmert
    Scientific Reports, 11
  • [44] Understanding gender differences in professional European football through machine learning interpretability and match actions data
    Garnica-Caparros, Marc
    Memmert, Daniel
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [45] Machine learning can predict disease manifestations and outcomes in lymphangioleiomyomatosis
    Chernbumroong, Saisakul
    Johnson, Janice
    Gupta, Nishant
    Miller, Suzanne
    McCormack, Francis X.
    Garibaldi, Jonathan M.
    Johnson, Simon R.
    EUROPEAN RESPIRATORY JOURNAL, 2021, 57 (06)
  • [46] Incorporating Radiomics into Machine Learning Models to Predict Outcomes of Neuroblastoma
    Liu, Gengbo
    Poon, Mini
    Zapala, Matthew A.
    Temple, William C.
    Vo, Kieuhoa T.
    Matthay, Kathrine K.
    Mitra, Debasis
    Seo, Youngho
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (03) : 605 - 612
  • [47] Automated machine learning to predict anatomical outcomes in pneumatic retinopexy
    Nisanova, Arina
    Yavary, Arefeh
    Deaner, Jordan
    Ali, Ferhina S.
    Gogte, Priyanka
    Kaplan, Richard
    Chen, Kevin C.
    Nudleman, Eric
    Grewal, Dilraj
    Gupta, Meenakashi
    Wolfe, Jeremy
    Klufas, Michael
    Yiu, Glenn
    Soltani-Bozchalooi, Iman
    Emami-Naeini, Parisa
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [48] Using machine learning to predict outcomes following suprainguinal bypass
    Li, Ben
    Eisenberg, Naomi
    Beaton, Derek
    Lee, Douglas S.
    Aljabri, Badr
    Wijeysundera, Duminda N.
    Rotstein, Ori D.
    de Mestral, Charles
    Mamdani, Muhammad
    Roche-Nagle, Graham
    Al-Omran, Mohammed
    JOURNAL OF VASCULAR SURGERY, 2024, 79 (03) : 593 - 608.e8
  • [49] Utilizing early engagement and machine learning to predict student outcomes
    Gray, Cameron C.
    Perkins, Dave
    COMPUTERS & EDUCATION, 2019, 131 : 22 - 32
  • [50] Machine Learning to Predict Outcomes of Endovascular Intervention for Patients With PAD
    Li, Ben
    Warren, Blair E.
    Eisenberg, Naomi
    Beaton, Derek
    Lee, Douglas S.
    Aljabri, Badr
    Verma, Raj
    Wijeysundera, Duminda N.
    Rotstein, Ori D.
    de Mestral, Charles
    Mamdani, Muhammad
    Roche-Nagle, Graham
    Al-Omran, Mohammed
    JAMA NETWORK OPEN, 2024, 7 (03) : E242350