Numerical Study on the Local Aggregation of Helium Bubbles in Liquid Lithium and Its Thermal Analysis

被引:0
作者
Liu Y. [1 ]
He Y. [1 ]
Tan P. [1 ]
机构
[1] Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Anhui, Hefei
关键词
Bubble accumulation; Helium; Liquid lithium; Thermal analysis; Two-phase flow;
D O I
10.1115/1.4065467
中图分类号
学科分类号
摘要
Liquid lithium is widely regarded as an optimal cooling medium for space nuclear reactors due to its exceptional heat transfer properties and low density. However, the helium bubbles generated by liquid lithium under space irradiation pose significant hazards to the safe and stable operation of nuclear reactions. This study employs the COMSOL finite element software to construct the level-set two-phase flow models and bubble stream model separately to investigate the local accumulation of helium bubbles and the overall flow of low-concentration gas-liquid mixtures. The main focus is on examining the different distributions of multiple helium bubbles randomly generated in local liquid lithium and the influence of boundary conditions on their accumulation morphology, as well as the impact of low-concentration bubble stream on their overall heat transfer performance. Agglomerated bubbles with radii between 5 μm and 150 μm are classified into three categories based on local concentrations: circular (≤20.37%), irregular elongated (up to 30.44%), and banded (up to 36.31%).The interconnected banded bubbles can be up to 8 times larger than irregularly elongated ones, and they have a positive effect on the distribution of physical quantities and wall temperature perturbations in the pipeline. The increase in inlet velocity triggers bubble impacts and fragmentation, further reducing thermal resistance and enhancing heat transfer performance. When the bubble diameter is less than 15 μm and the bubble concentration is within 1%, the influence of the mixed flow on overall heat transfer is not significant. This study provides insights for manipulating bubble structure and guiding localized and comprehensive thermal analyses. © 2024 American Society of Mechanical Engineers (ASME). All rights reserved.
引用
收藏
相关论文
共 25 条
[1]  
Wu Y., Bai Y., Song Y., Huang Q., Zhao Z., Hu L., Development Strategy and Conceptual Design of China Lead-Based Research Reactor, Ann. Nucl. Energy, 87, pp. 511-516, (2016)
[2]  
Kirillov I. R., Lithium Cooled Blanket of RF DEMO Reactor, Fusion Eng. Des., 49–50, pp. 457-465, (2000)
[3]  
Fradera J., Cuesta-Lopez S., Nucleation, Growth and Transport Modelling of Helium Bubbles Under Nuclear Irradiation in Lead-Lithium With the Self-Consistent Nucleation Theory and Surface Tension Corrections, Fusion Eng. Des, 88, 12, pp. 3215-3223, (2013)
[4]  
Iasir A. R. M., Hammond K. D., Helium Impurities and Interactions in Lithium, Comput. Mater. Sci, 204, (2022)
[5]  
Alvarez-Galera E., Marti J., Mazzanti F., Batet L., Nucleation of Helium in Pure Liquid Lithium, J. Chem. Phys, 159, 2, (2023)
[6]  
McGhee J. M., Gas Production and Behavior in the Coolant of the SP-100 Space Nuclear Power System (No. LA-11629-T), (1989)
[7]  
Mirsandi H., Baltussen M. W., Peters E. A. J. F., van Odyck D. E. A., van Oord J., van der Plas D., Kuipers J. A. M., Numerical Simulations of Bubble Formation in Liquid Metal, Int. J. Multiphase Flow, 131, (2020)
[8]  
Liu S.-M., Li S.-H., Han W.-Z., Revealing the Dynamics of Helium Bubbles Using In Situ Techniques, JOM, 72, 6, pp. 2352-2362, (2020)
[9]  
Coulibaly A., Bi J., Lin X., Christopher D. M., Effect of Bubble Coalescence on the Wall Heat Transfer During Subcooled Pool Boiling, Int. J. Therm. Sci, 76, pp. 101-109, (2014)
[10]  
Gutierrez G., Peuget S., Hinks J. A., Greaves G., Donnelly S. E., Oliviero E., Jegou C., Helium Bubble Formation in Nuclear Glass by In-Situ TEM Ion Implantation, J. Nucl. Mater, 452, 1–3, pp. 565-568, (2014)