Embodied carbon;
Building structures;
Early design stage;
Bayesian Network;
EMISSIONS;
DESIGN;
CONSTRUCTION;
ENERGY;
D O I:
10.1016/j.jobe.2024.109891
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
In an effort to minimise the carbon footprint of building structures, a range of prediction tools and methods have been recently proposed, so to enable design practitioners evaluating how their design choices ultimately affect the carbon embodied in their designs. Such tools are most often targeted for use at the early stage of the design process, that is when exploration of alternative design options is usually undertaken, hence room for potential carbon reductions is greatest and at no extra cost of redesign. The overarching methodology behind existing tools predominantly relies on idealised models to characterise the structural system, usually employing closed-form design equations and/or numerical Finite Element to generate an inventory of material quantity data (that is ultimately required for embodied carbon estimates). Despite the very high level of complexity achieved by some models, the absence of any empirical reference with 'as-built' inventory data of material quantities leaves room for doubt on how accurate such models really are in capturing the complexities and inherent variability of the population of real building structures such models aim to represent. To bypass this limitation, a data-driven probabilistic graphical model is proposed here as alternative to existing approaches. A Bayesian Network was developed and tested as a proof of concept, trained on a dataset of 133 data-points of real building structures, leveraging on six design variables (at most) to fully characterise the entire design space of early design options. Despite the very small set of 'explanatory' design variables, the model exhibited a 73% accuracy (mean average absolute prediction error of 27%) when predicting the embodied carbon on a test sample of unseen real building structures. The study ultimately demonstrates the viability of adopting a probabilistic (data-driven) approach for such an inference task as an inherently robust alternative to data-blind models currently proposed in literature.
机构:
Univ Bordeaux, ISM, UMR 5255, Cours Liberat 351, F-33400 Talence, France
NOBATEK INEF4, 67 Rue Mirambeau, F-64600 Anglet, FranceUniv Bordeaux, ISM, UMR 5255, Cours Liberat 351, F-33400 Talence, France
Lotteau, Marc
Loubet, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, ISM, UMR 5255, Cours Liberat 351, F-33400 Talence, France
ENSCBP Bordeaux, INP, Cours Liberat 351, ISM,UMR 5255, F-33400 Talence, FranceUniv Bordeaux, ISM, UMR 5255, Cours Liberat 351, F-33400 Talence, France
Loubet, Philippe
Sonnemann, Guido
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, ISM, UMR 5255, Cours Liberat 351, F-33400 Talence, France
CNRS, ISM, Cours Liberat 351, UMR 5255, F-33400 Talence, FranceUniv Bordeaux, ISM, UMR 5255, Cours Liberat 351, F-33400 Talence, France
机构:
Univ Lleida, GREiA Res Grp, Pere Cabrera S-N, Lleida 25001, SpainUniv Lleida, GREiA Res Grp, Pere Cabrera S-N, Lleida 25001, Spain
Cabeza, Luisa F.
Boquera, Laura
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lleida, GREiA Res Grp, Pere Cabrera S-N, Lleida 25001, Spain
CIRIAF Interuniv Res Ctr Pollut & Environm Mauro, Via G Duranti 63, I-06125 Perugia, ItalyUniv Lleida, GREiA Res Grp, Pere Cabrera S-N, Lleida 25001, Spain
Boquera, Laura
Chafer, Marta
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lleida, GREiA Res Grp, Pere Cabrera S-N, Lleida 25001, Spain
CIRIAF Interuniv Res Ctr Pollut & Environm Mauro, Via G Duranti 63, I-06125 Perugia, ItalyUniv Lleida, GREiA Res Grp, Pere Cabrera S-N, Lleida 25001, Spain
Chafer, Marta
Verez, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lleida, GREiA Res Grp, Pere Cabrera S-N, Lleida 25001, SpainUniv Lleida, GREiA Res Grp, Pere Cabrera S-N, Lleida 25001, Spain
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
Zheng, Xiaoyu
Cai, Bowen
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
Cai, Bowen
Park, Jooyoung
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Civil & Environm Engn, 1 Gwanak Ro, Seoul 08826, South KoreaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
Park, Jooyoung
Seo, Bumsuk
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Inst Construct & Environm Engn, 1 Gwanak Ro, Seoul 08826, South KoreaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
Seo, Bumsuk
Wang, Siyuan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
Wang, Siyuan
Shao, Zhenfeng
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
机构:
Leeds Beckett Univ, Sch Built Environm & Engn, Leeds, W Yorkshire, EnglandLeeds Beckett Univ, Sch Built Environm & Engn, Leeds, W Yorkshire, England
Ajayi, Saheed O.
Oyedele, Lukumon O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ West England, Big Data Enterprise & Artificial Intelligence Lab, Frenchay Campus,Coldharbour Lane, Bristol, Avon, EnglandLeeds Beckett Univ, Sch Built Environm & Engn, Leeds, W Yorkshire, England
Oyedele, Lukumon O.
Ilori, Olusegun M.
论文数: 0引用数: 0
h-index: 0
机构:
Airedale Int Air Conditioning Ltd, R&D Dept, Leeds, W Yorkshire, EnglandLeeds Beckett Univ, Sch Built Environm & Engn, Leeds, W Yorkshire, England