Asymptotic expansion of the quadratic variation of fractional stochastic differential

被引:0
|
作者
Yamagishi, Hayate [1 ]
Yoshida, Nakahiro [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Asymptotic expansion; Skorohod integral; Mixed normal distribution; Malliavin calculus; Fractional Brownian motion; Exponent; MALLIAVIN CALCULUS; EULER APPROXIMATION; EDGEWORTH EXPANSION; FUNCTIONALS; CONVERGENCE; VARIABLES;
D O I
10.1016/j.spa.2024.104389
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive an asymptotic expansion for the quadratic variation of a stochastic process satisfying a stochastic differential equation driven by a fractional Brownian motion, based on the theory of asymptotic expansion of Skorohod integrals converging to a mixed normal limit. In order to apply the general theory, it is necessary to estimate functionals that are a randomly weighted sum of products of multiple integrals of the fractional Brownian motion, in expanding the quadratic variation and identifying the limit random symbols. To overcome the difficulty, we utilized the theory of exponents of functionals, which was introduced by the authors in Yamagishi and Yoshida (2023).
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion
    Ciprian A. Tudor
    Nakahiro Yoshida
    Statistical Inference for Stochastic Processes, 2020, 23 : 435 - 463
  • [2] Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion
    Tudor, Ciprian A.
    Yoshida, Nakahiro
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 435 - 463
  • [3] ASYMPTOTIC THEORY FOR QUADRATIC VARIATION OF HARMONIZABLE FRACTIONAL STABLE PROCESSES
    Basse-O'Connor, Andreas
    Podolskij, Mark
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 110 : 3 - 12
  • [4] Trees and asymptotic expansions for fractional stochastic differential equations
    Neuenkirch, A.
    Nourdin, I.
    Roessler, A.
    Tindel, S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01): : 157 - 174
  • [5] Asymptotic behavior of weighted quadratic variation of tempered fractional Brownian motion
    Wang, Jixia
    Sun, Lu
    Miao, Yu
    STATISTICS & PROBABILITY LETTERS, 2024, 207
  • [6] The asymptotic error of chaos expansion approximations for stochastic differential equations
    Huschto, Tony
    Podolskij, Mark
    Sager, Sebastian
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2019, 6 (02): : 145 - 165
  • [7] On the asymptotic behavior of solutions to bilinear Caputo stochastic fractional differential equations
    Huong, P. T.
    Anh, P. T.
    STATISTICS & PROBABILITY LETTERS, 2025, 216
  • [8] Asymptotic inference for stochastic differential equations driven by fractional Brownian motion
    Shohei Nakajima
    Yasutaka Shimizu
    Japanese Journal of Statistics and Data Science, 2023, 6 : 431 - 455
  • [9] Asymptotic separation between solutions of Caputo fractional stochastic differential equations
    Son, Doan Thai
    Huong, Phan Thi
    Kloeden, Peter E.
    Tuan, Hoang The
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) : 654 - 664
  • [10] Asymptotic inference for stochastic differential equations driven by fractional Brownian motion
    Nakajima, Shohei
    Shimizu, Yasutaka
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023, 6 (01) : 431 - 455