PROPAGATION OF VECTOR VORTEX BEAMS EXCITED BY A TERAHERTZ LASER DIELECTRIC RESONATOR

被引:0
作者
Degtyarev A. [1 ]
Dubinin M. [1 ]
Maslov V. [1 ]
Muntean K. [1 ]
Svistunov O. [1 ]
机构
[1] V.N. Karazin Kharkiv National University, 4 Svoboda Sq., Kharkiv
来源
Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika) | 2024年 / 83卷 / 08期
关键词
dielectric waveguide resonator; polarization; radiation propagation; spiral phase plate; terahertz laser; vortex beams;
D O I
10.1615/TelecomRadEng.2024052443
中图分类号
学科分类号
摘要
In this paper, analytical expressions for the nonparaxial mode diffraction of a terahertz laser dielectric waveguide resonator are derived. It is assumed that the modes interact with a spiral phase plate. The cases of different topological charges (n) are considered. Also, using numerical simulations, the physical features of emerging vortex beams are studied when they propagate in free space. The Rayleigh-Sommerfeld vector theory is used to study propagation of the vortex laser beams in different diffraction zones excited by the modes of a dielectric waveguide quasi-optical resonator upon incidence on a spiral phase plate. It is shown that the interaction of a spiral phase plate with a linearly polarized EH11 mode forms a ring (n = 1, 2) due to field structure with an intensity maximum at the center (n = 0). For the azimuthally polarized TE01 mode, the ring (n = 0) field structure transforms into a field distribution with an intensity maximum at the center (n = 1) and then back to a ring (n = 2). In this case, the phase front of the EH11 mode beam turns from a spherical shape to a spiral one with one singularity point on the axis, while a region with two singularity points appears off the axis for the phase structure of the TE01 mode beam. © 2024 by Begell House, Inc.
引用
收藏
页码:57 / 67
页数:10
相关论文
共 30 条
[1]  
Al Dhaybi A., Degert J., Brasselet E., Abraham E., Freysz E., Terahertz Vortex Beam Generation by Infrared Vector Beam Rectification, J. Opt. Soc. Am. B, 36, 1, (2019)
[2]  
Beijersbergen M.W., Coerwinkel R.P.C., Kristensen M., Woerdman J.P., Helical-Wavefront Laser Beams Produced with a Helical Phase Plate, Opt. Commun, 112, 5–6, (1994)
[3]  
Chen S.C., Feng Z., Li J., Tan W., Du L.H., Cai J., Ma Y., He K., Ding H., Zhai Z.H., Li Z.R., Ghost Spintronic THz-Emitter-Array Microscope, Light Sci. Appl, 9, 1, (2020)
[4]  
Chevalier P., Amirzhan A., Wang F., Piccardo M., Johnson S.G., Capasso F., Everitt H.O., Widely Tunable Compact Terahertz Gas Laser, Science, 366, 6467, (2019)
[5]  
Farhoomand J., Pickett H.M., Stable 1.25 Watts CW Far Infrared Laser Radiation at the 119 μm Methanol Line, Int. J. Infrared Millim. Waves, 8, 5, (1987)
[6]  
Forbes A., Advances in Orbital Angular Momentum Lasers, J. Light. Technol, 41, 7, (2023)
[7]  
Ge S.J., Shen Z.X., Chen P., Liang X., Wang X.K., Hu W., Zhang Y., Lu Y.Q., Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors, Crystals, 7, 10, (2017)
[8]  
Gu B., Cui Y., Nonparaxial and Paraxial Focusing of Azimuthal-Variant Vector Beams, Opt. Express, 20, 16, pp. 17684-17694, (2012)
[9]  
Guan S., Cheng J., Chang S., Recent Progress of Terahertz Spatial Light Modulators: Materials, Principles and Applications, Micromachines, 13, 10, (2022)
[10]  
Gurin O.V., Degtyarev A.V., Dubinin N.N., Legenkiy M.N., Maslov V.A., Muntean K.I., Ryabykh V.N., Senyuta V.S., Formation of Beams with Nonuniform Polarisation of Radiation in a CW Waveguide Terahertz Laser, Quantum Electron, 51, 4, (2021)