Enhanced uranium removal from aqueous solution by core–shell Fe0@Fe3O4: Insight into the synergistic effect of Fe0 and Fe3O4

被引:2
|
作者
Wang S. [1 ]
Hu J. [1 ]
Wang J. [1 ,2 ]
机构
[1] Laboratory of Environmental Technology, INET, Tsinghua University, Beijing
[2] Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing
关键词
Ferroferric oxide; Radiation; Removal mechanism; Uranium; Zero-valent iron;
D O I
10.1016/j.chemosphere.2024.141730
中图分类号
学科分类号
摘要
In this study, Fe0@Fe3O4 was synthesized and used to remove U(VI) from groundwater. Different experimental conditions and cycling experiments were used to investigate the performance of Fe0@Fe3O4 in the U(VI) removal, and the XRD, TEM, XPS and XANES techniques were employed to characterize the Fe0@Fe3O4. The results showed that the U(VI) removal efficiency of Fe0@Fe3O4 was 48.5 mg/g that was higher than the sum of removal efficiency of Fe0 and Fe3O4. The uranium on the surface of Fe0@Fe3O4 mainly existed as U(IV), followed by U(VI) and U(V). The Fe0 content decreased after reaction, while the Fe3O4 content increased. Based on the results of experiments and characterization, the enhanced removal efficiency of Fe0@Fe3O4 was attributed to the synergistic effect of Fe0 and Fe3O4 in which Fe3O4 accelerated the Fe0 corrosion that promoted the progressively formation of Fe(II) that promoted the reduction of adsorbed U(VI) to U(IV) and incorporated U(VI) to U(V). The performance of Fe0@Fe3O4 at near-neutrality condition was better than at acidic and alkalic conditions. The chloride ions, sulfate ions and nitrate ions showed minor effect on the Fe0@Fe3O4 performance, while carbonate ions exhibited significant inhibition. The metal cations showed different effect on the Fe0@Fe3O4 performance. The removal efficiency of Fe0@Fe3O4 decreased with the number of cycling experiment. Ionizing radiation could regenerate the used Fe0@Fe3O4. This study provides insight into the U(VI) removal by Fe0@Fe3O4 in aqueous solution. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Removal of methylene blue from water by magnetic Fe0/Fe3O4/graphene composites
    Chong, Shan
    Huang, Ting
    Zhang, Guangming
    Guo, Jianbin
    Li, Xueyan
    DESALINATION AND WATER TREATMENT, 2020, 188 : 239 - 246
  • [2] Fe3O4 and Fe3O4/Fe2+/Fe0 catalyzed Fenton-like process for advanced treatment of pharmaceutical wastewater
    Zhang, Nan
    Zhang, Guangming
    Huang, Ting
    Chong, Shan
    Liu, Yucan
    DESALINATION AND WATER TREATMENT, 2017, 93 : 100 - 108
  • [3] Degradation of 4-chlorophenol by mixed Fe0/Fe3O4 nanoparticles: from the perspective of mechanisms
    Cheng, Rong
    Xue, Xingyan
    Shi, Lei
    Zhang, Tao
    Liu, Yaping
    Kang, Mi
    Zheng, Xiang
    WATER SCIENCE AND TECHNOLOGY, 2017, 75 (02) : 263 - 270
  • [4] Removal of Hg0 Using Vaporized H2O2 and an Additive Catalyzed by Fe3O4/Fe0
    Zhao, Yi
    Yuan, Bo
    Shen, Yao
    Mao, Xingzhou
    Hao, Runlong
    ENERGY & FUELS, 2018, 32 (08) : 8579 - 8586
  • [5] Development of Fe0/Fe3O4 composites with tunable properties facilitated by Fe2+ for phosphate removal from river water
    Wan, Jun
    Wu, Baile
    Lo, Irene M. C.
    CHEMICAL ENGINEERING JOURNAL, 2020, 388
  • [6] Methyl orange removal by a magnetic Fe0/Fe3O4/graphene composite: influencing factors, desulfurization, and mechanism
    Chong, Shan
    Zhang, Guangming
    Liu, Yucan
    Zhang, Nan
    Huang, Ting
    Wang, Hongchen
    DESALINATION AND WATER TREATMENT, 2017, 84 : 255 - 261
  • [7] Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles
    Wu, Yanjun
    Zhang, Jinghui
    Tong, Yifei
    Xu, Xinhua
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 172 (2-3) : 1640 - 1645
  • [8] Activation of peroxymonosulfate by Fe0@Fe3O4 core-shell nanowires for sulfate radical generation: Electron transfer and transformation products
    Feng, Yong
    Zhong, Jie
    Zhang, Liyuan
    Fan, Yiang
    Yang, Zequn
    Shih, Kaimin
    Li, Hailong
    Wu, Deli
    Yan, Bo
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 247
  • [9] Systematic Performance Comparison of Fe3+/Fe0/Peroxymonosulfate and Fe3+/Fe0/Peroxydisulfate Systems for Organics Removal
    Oh, Wen-Da
    Ho, Yeek-Chia
    Mohamad, Mardawani
    Ho, Chii-Dong
    Ravi, Rajiv
    Lim, Jun-Wei
    MATERIALS, 2021, 14 (18)
  • [10] Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles
    Rao, Ashit
    Bankar, Ashok
    Kumar, Ameeta Ravi
    Gosavi, Suresh
    Zinjarde, Smita
    JOURNAL OF CONTAMINANT HYDROLOGY, 2013, 146 : 63 - 73